
NetRT: Enhancing RDMA with Retransmission
Offloading in Data Center Networks

Wentao Wang∗, Jiangping Han†‡, Kaiping Xue†‡, Jian Li†, Kunpeng Ding†, Ruidong Li§
∗Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027, China

†School of Cyber Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
§National Institute of Information and Communications Technology, Kanazawa University, Tokyo 184-0015, Japan

‡Corresponding author: J. Han, K. Xue (jphan, kpxue)@ustc.edu.cn

Abstract—RDMA over Converged Ethernet (RoCE) enables
the deployment of RDMA in Ethernet-based data centers and is
becoming a mainstream solution. Due to the limited processing
capability of RDMA NICs (RNICs), Priority-based Flow Control
(PFC) is enabled to prevent decreased transmission efficiency
caused by packet loss and retransmission. However, PFC brings
performance impairments and cannot fully ensure reliability in
the presence of various packet loss and out-of-order delivery
cases in large-scale data centers. To achieve high resilience against
lossy conditions and disorders while considering feasibility, this
paper proposes NetRT, an innovative retransmission offloading
solution. NetRT deploys selective retransmission between top-
of-rack switches instead of RNICs, leveraging modern switches’
hardware resources and programmable features for efficient and
deployable in-network recovery. We develop key mechanisms to
manage in-network retransmissions, including a ternary state
machine and congestion avoidance, aiming for efficiency and
transparency. Evaluations show that NetRT can handle diverse
packet loss and out-of-order cases with acceptable overhead,
reducing end-to-end retransmissions and decreasing flow com-
pletion times by up to 75%.

Index Terms—Data Center Networks, RDMA, Programmable
Switches, Selective Retransmission

I. INTRODUCTION

Applications within data centers require high bandwidth and
low latency [1]–[3]. Remote Direct Memory Access (RDMA)
offers higher transfer performance and lower CPU overhead
via bypassing the kernel and offloading the stack to Network
Interface Cards (NICs), thus becoming the main transmission
technology in high-performance computing clusters. With the
ability to implement RDMA over existing Ethernet facilities
instead of specific switching equipment, RDMA over Con-
verged Ethernet (RoCE) becomes the canonical deployment
method that balances performance and cost.

Despite the benefits of hardware offloading, RDMA suffers
from limited hardware resources of RDMA NICs (RNICs).
Specifically, RNICs are equipped with relatively limited on-
chip memory, which presents a significant challenge in han-
dling out-of-order packets and maintaining the data structures
necessary for reordering. To illustrate, commonly used com-
modity RNICs like NVIDIA Mellanox ConnectX-5 (CX5)
[4] have only 2 MB of memory and deploy a simple Go-
Back-N (GBN) retransmission mechanism. As a result, even
a small quantity of packet loss can cause significant perfor-
mance degradation, e.g., 0.1% loss rate can lead to 25% drop

in throughput [5]. To prevent such performance degradation
caused by congestion loss, RoCE employs Priority-based Flow
Control (PFC) [6] to construct lossless networks, thus avoiding
queue overflow via pausing upstream ports.

However, PFC is problematic and inadequate for RoCE.
For one thing, there are inherent performance impairments
associated with PFC. Several studies have exposed that PFC
can cause congestion spreading, unfairness, head-of-the-line
blocking, and even deadlocks [7]–[9]. For another, PFC is not
a comprehensive solution for all packet loss and out-of-order
scenarios in data center networks. Link corruption is another
significant source of packet loss in large-scale data centers,
which provokes a higher loss rate and cannot be mitigated
by flow control [10]. Besides, some fine-grained load bal-
ancing schemes may distribute packets across different paths,
potentially causing packet disorder and prompting unnecessary
retransmissions by RNICs [11]–[13]. Therefore, rather than
relying solely on PFC, enhancing the transmission resilience
for RoCE to cope with complex lossy conditions represents a
crucial solution [14], as well as a significant challenge.

To address this challenge, the existing state-of-the-art so-
lutions focus on improving architecture and deploying more
efficient Selective Retransmission (SR) on memory-limited
RNICs to eliminate the dependence on PFC. For instance, IRN
[15] avoids high memory overheads by meticulously designing
SR-specific data structures, and SRNIC [16] employs buffer
uploading. Despite the improved resilience of these solutions,
the modifications to RNIC hardware introduce deployment
complexity. Unlike software updates, the existing commod-
ity RNICs are challenging to modify functionally, making
it difficult to implement these advanced solutions in actual
data centers. Additionally, the costs and business interruptions
associated with equipment replacement further limit feasibility.
This raises the question: is there a feasible improvement
without reliance on RNIC hardware modifications?

The advancements in modern programmable switches pro-
vide an answer to this question. Over the past decade, vendors
have consistently increased the capacity of their commodity
switches. The current generation of switches has reached
a capacity of tens of megabytes, as exemplified by Intel
Tofino switch [17], which has a 64 MB shared buffer. In
contrast, data center networks with bandwidths of hundreds
of Gbps and latencies of microseconds have a bandwidth-

IE
EE

 IN
FO

CO
M

 2
02

5
- I

EE
E

Co
nf

er
en

ce
 o

n
Co

m
pu

te
r C

om
m

un
ic

at
io

ns
 |

 9
79

-8
-3

31
5-

43
05

-1
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IN

FO
CO

M
55

64
8.

20
25

.1
10

44
49

3

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

delay product limited to O(100 KB) [18]. Thus, the switches
have sufficient space to accommodate additional algorithms’
data structures. Furthermore, these switches offer enhanced
operational flexibility. Network operators can customize packet
handling through data plane languages such as P4 [19]. These
benefits allow switches to assume more transport functions and
provide more in-network services.

In light of these observations, we propose NetRT, an in-
Network ReTransmission offloading solution, deployed on
programmable Top-of-Rack (ToR) switches. Our core idea is
to leverage relatively abundant hardware resources (as opposed
to RNICs) and programmable features to perform efficient
ToR-to-ToR SR for enhanced transmission resilience and fea-
sibility considerations. The design space of NetRT is shown
in Fig. 1. Specifically, NetRT constructs a duplicate pool to
mirror traffic at the source ToR (SrcToR) and checks the
packet arrival order at the destination ToR (DstToR). In the
event of packet loss, the DstToR tracks the arrival of out-
of-order packets and performs a SACK-like retransmission
request, based on which the SrcToR implements in-network
recovery from the duplicate pool. In addition, to address
the deployment challenges, we design mechanisms including
duplicate pool admission policy, retransmission state machine,
and in-network congestion avoidance to enable NetRT to
efficiently utilize switch resources and achieve transparent in-
order packet delivery.

We evaluate NetRT comprehensively through both testbed
experiments and ns-3 [20] simulations, which demonstrate
that NetRT enables significant performance improvements.
Our testbed results show that NetRT can effectively cope
with network packet loss, providing up to 75% reduction in
Flow Completion Time (FCT) with acceptable overhead. In
incast scenarios, we show that NetRT can work effectively
in lossy networks, offering at most about 50% improvement.
Additionally, NetRT enhances out-of-order tolerance and can
be employed in conjunction with fine-grained load-balancing
schemes, further reducing tail FCT by 30%.

In summary, the contributions of this paper are as follows:

• We propose NetRT to provide enhanced transmission
resilience for RoCE using programmable switches. NetRT
innovatively offloads retransmission to the near end, en-
abling efficient ToR-to-ToR SR without requiring any
modifications to RNIC hardware.

• We design key components of NetRT with deployment
considerations, including duplicate pool utilization,
ternary retransmission state machine, and in-network
congestion avoidance. These designs ensure efficient
and transparent in-order packet delivery with acceptable
overhead and in-network impact.

• We analyze the feasibility of NetRT and conduct com-
prehensive evaluations through real testbed experiments
and simulations. The results show that NetRT can effec-
tively enhance RoCE’s handling of lossy conditions and
disorders, providing benefits comparable to RNIC-based
solutions while maintaining high practicality.

RoCE

PFC

Congestion Spreading,

Unfairness, Deadlock Efficient End

Retransmission

In-Network

Recovery

(e.g., IRN, SRNIC) (NetRT)

Without PFC

Fig. 1: Design space for transmission reliability of RoCE.

The rest of this paper is organized as follows. In Section II,
we explain the motivation of our solution. Section III provides
a detailed description of the design and implementation of
NetRT. Comprehensive performance evaluations are presented
in Section IV. In Section V, we introduce the related works
aimed at improving the transmission robustness of RoCE.
Finally, we conclude the paper in Section VI.

II. MOTIVATION

In this section, we illustrate the necessity of enhancing loss
and out-of-order tolerance for RoCE while also highlighting
the challenges associated with the deployment of existing
solutions. Subsequently, we present the insights gained from
the development of programmable switches.

A. Flaws and Inadequacies of PFC

Since RNICs perform poorly when there is packet loss,
PFC is enabled for RoCE to avoid congestion packet loss.
However, PFC introduces configuration complexity and other
performance issues. For instance, the backpressure mechanism
employed by PFC can lead to the accumulation of upstream
queues, causing congestion to spread. Coarse-grained port
pauses can harm uncongested flows and introduce unfairness.
In the presence of buffer loop dependencies, it can even result
in network deadlocks. These issues have been extensively
documented in numerous works [7]–[9], [21].

Furthermore, PFC is not adequately suited for handling
all packet loss and out-of-order situations, such as packet
corruption and out-of-order caused by load balancing across
multiple paths. Packet corruption represents another significant
contributor to loss in large-scale data centers. It occurs due
to fiber bending and damage, connector contamination, etc.,
eventually resulting in data packet error and discarding. Zhuo
et al. demonstrated that packet corruption can impose a higher
packet loss rate than congestion [10]. Packet corruption has
become a pervasive challenge in data centers [22], which
cannot be mitigated by flow control mechanisms. Besides,
the load balancing process may also result in transmitting
packets in an incorrect sequence. In large-scale data centers,
multiple links are typically established between nodes. Some
fine-grained schemes may distribute the packets of the same
flow across different paths to achieve a more balanced effect
[11], [12]. These strategies can potentially cause packets to
arrive out of order, leading RNICs to incorrectly interpret
packet loss and perform unnecessary retransmissions. Thus,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

better load balancing and transmission efficiency are dilemmas
with the low out-of-order tolerance of RNICs.

In summary, relying solely on PFC is insufficient to address
the transmission challenges in data centers. We believe that
enhancing transmission resilience is a more pivotal strategy.

B. Deployment Complexity of RNIC-based Solutions

Due to the weak transmission robustness caused by the
inefficient GBN, some solutions propose to replace it with
more efficient Selective Retransmission (SR). To address the
memory overhead associated with SR, these solutions optimize
the algorithms and redesign the architecture [15], [16], [23].
While these solutions improve the transmission resilience of
RNICs on their respective platforms, they face significant chal-
lenges in actual deployment. The primary obstacle is that the
hardware offloading nature of RDMA forces these solutions
to introduce RNIC hardware modifications for deployment,
which is not feasible in most data centers. Existing data centers
are equipped with commodity RNICs that typically do not
offer primitives for customized modifications.

In recent years, some commodity RNICs have also enabled
SR. NVIDIA’s ConnectX series, for instance, has commenced
support for SR in CX6 [24]. The advent of these commodities
greatly reduces the complexity of deployment. However, for
facilities that have already been established, upgrading to these
new RNICs would require substantial replacement of network
devices. It is uncommon to replace equipment in bulk in
active data centers due to significant financial and operational
considerations involved. Therefore, the feasibility and cost of
deploying a solution are crucial factors to consider.

C. Development of Programmable Switches

Programmable switches have evolved in recent years,
specifically in two aspects: the expansion of buffering space
and the enhancement of capabilities, thus being able to take
on more transmission functions within networks

In contrast to RNICs, which typically have a limited on-chip
memory of only a few megabytes, programmable switches
possess a significantly higher buffer space. The switch buffer
size has grown by an order of magnitude, reaching levels in
the tens of megabytes. For instance, Trident 3 has a shared
buffer of 32 MB, and Intel Tofino 2 provides 64 MB. Table I
summarizes the shared buffer sizes of popular commodity
programmable switches [17], [25]–[27]. In contrast, despite
increasing bandwidth in data centers, the Round-Trip Time
(RTT) is reduced to microseconds, limiting the Bandwidth-
Delay Product (BDP) to the range of O(10 KB) to O(100 KB).
It can be concluded that the current switches have sufficient
capacity to accommodate network traffic [28] and to maintain
additional data structure overhead for in-network algorithms.

Along with the sufficient memory space, the switches’ capa-
bilities are also richer. Modern programmable switches support
multiple queues per port and provide scheduling functions
within the data plane. Users can independently pause and
resume each queue using the provided primitives, enabling
per-flow transmission management such as traffic backup [22],

TABLE I: Shared buffer size of mainstream programmable
switches.

Switch Commodity Buffer Size

Trident 3 32 MB
Spectrum 3 64 MB
Tofino 2 64 MB
Tomahawk 4 > 64 MB

packet holding and in-network reordering [13]. Furthermore,
the switches enable users to create customized metadata for
additional in-network interaction. These features make in-
network retransmissions possible.

Summary and our design goal: We show the observations
on RoCE transmission reliability: (i) The hop-by-hop flow
control mechanism (typically PFC) has inherent defects and
fails to fully guarantee reliability. (ii) The RNIC-based SR
performs better but introduces hardware deployment complex-
ity. Then, we show that the network can put SR to the near-end
switch, leveraging the growing capabilities of programmable
switches to provide retransmission offloading for end RNICs.
Accordingly, our design objective is to provide transparent in-
network packet loss recovery and in-order packet delivery with
feasible overhead, addressing the challenges of transmission
reliability requirements and deployability.

III. NETRT DESIGN

We propose NetRT, an in-network retransmission offloading
solution designed to enhance RoCE resilience through near-
end SR. In this section, we start by describing the design prin-
ciples of NetRT. Subsequently, we present a general overview,
followed by a detailed description of each component. Finally,
we analyze the overhead and feasibility of NetRT.

A. Design Principles

NetRT is designed to implement in-network loss recovery
and reordering on programmable ToR switches to provide
packet order guarantees without modifying RNIC hardware
and transport protocol. The following three design principles
guide the development of NetRT.

1) Effectiveness. Due to the negative impact of end retrans-
missions on transmission efficiency, NetRT must possess
the capacity to handle various loss and disorder cases.
When packet loss occurs, NetRT needs to accurately
identify the lost packet and promptly execute in-network
recovery and reordering operations.

2) Transparency. To ensure the deployability of the solu-
tion, NetRT is transparent to RNICs. NetRT involves no
modifications to the transport protocol and no additional
interaction with RNICs. Furthermore, the solution should
avoid impacting other traffic.

3) Best Efforts. Given that the primary function of a switch
is forwarding, NetRT employs the principle of best-effort
services. Once faced with resource constraints, switches
prioritize original packet buffering and forwarding, and

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

Duplicate

Pool

Mirror

High

Priority

Data

Center

Network

PSN=

ePSN

Reordering

Buffer
Bitmap

Request

Packet

ePSN

Bitmap

yes

no

ToR-to-ToR SR

Src

RNIC
Dst

RNIC

GBN

ReTx

SrcToR DstToR

In-order

delivery

Fig. 2: Overview of NetRT.

NetRT is required to have the ability to trigger retained
end retransmission.

B. Overview

Based on the above principles, we design NetRT, which is
overviewed in Fig. 2. To balance transmission robustness with
solution feasibility, NetRT implements ToR-to-ToR SR at the
near end instead of end-RNICs. Therefore, NetRT comprises
two components deployed on the source ToR (SrcToR) and
the destination ToR (DstToR), interconnected through the data
center network. At SrcToR, NetRT performs two key func-
tions: (i) utilizing available buffer space to create a duplicate
pool serving as an in-network backup for traffic, and (ii)
retrieving the duplicate pool upon receiving a retransmission
request from the opposite end and performing in-network
retransmission. At DstToR, NetRT handles: (i) checking the
packets’ arrival order and ensuring that packets are delivered
in order, (ii) blocking and tracking out-of-order packets dur-
ing packet loss, executing retransmission requests, and (iii)
managing and orderly releasing the reordering buffer based
on transmission state.

The key interaction design of NetRT between the ToRs is
illustrated in Fig. 3. For packets arriving in sequence, NetRT
conducts regular forwarding and enqueuing operations. In the
event of a packet loss, the DstToR intercepts out-of-order pack-
ets in the reordering buffer and requests retransmission using
the maintained expected Packet Sequence Number (ePSN)
and a bitmap data structure, similar to TCP’s SACK. Upon
receiving the retransmission request, the SrcToR can determine
the request sequence through the ePSN and the hole in the
bitmap. If the duplicate pool contains the requested data,
SrcToR assigns a high priority and selects a rate for the packets
to perform in-network retransmission. DstToR then receives
and delivers the retransmitted packets, sequentially releasing
the reordering buffer, thus achieving transparent packet loss
recovery for RNICs as shown in Fig. 3(a). In cases where
resources are constrained, the SrcToR may not be able to
retain duplicates of the requested data. Afterward, it responds
with an unfulfilled request notification, instructing DstToR to
cease in-network reordering. DstToR then switches to end
retransmission mode, actively releasing out-of-order packets to
trigger end-to-end retransmission, and waits for the end RNIC
to complete the recovery process, as shown in Fig. 3(b).

SrcToR DstSrc DstToR

PSN: x-1, x, x+1 Mirror traffic to

duplicate pool

Block out-of-

order packet

PSN: x+1

PSN: x

PSN: x-1

Request ReTx: x

ReTx: x

In-network

recovery

Release

buffer

(a) In-network loss recovery and reordering.
SrcToR DstSrc DstToR

PSN: x-1, x, x+1 Duplicate pool

constrained

Block out-of-

order packet

PSN: x+1

PSN: x-1

Request ReTx: x

Unfulfilled request: x

Convert to

end ReTx

NACKEnd-to-end

GBN

PSN: x, x+1

PSN: x, x+1

(b) Converting to end retransmission mode in resource-
constrained situations.

Fig. 3: NetRT’s main interaction process design.

C. Deployment Considerations

The deployment challenges of NetRT include efficient uti-
lization of the limited remaining SrcToR buffers, tracking
and managing per-flow retransmission with low overhead, and
mitigating the impact of retransmitted traffic on networks. To
address these challenges, we design a duplicate pool admission
algorithm, a ternary state machine at DstToR, and an in-
network congestion avoidance mechanism.

1) Duplicate Pool: For each packet, its duplicate remains in
the duplicate pool for about one RTT to ensure that the original
packet is delivered to the receiver. Thus, the optimal size for
the duplicate pool associated with each port is one BDP. In
resource-limited scenarios, the switch prioritizes the buffering
requirements of regular flows, thereby reducing the space
available in the duplicate pool, which may prevent SrcToR
from maintaining a complete duplicate of all flows.

To optimize the utilization of the duplicate pool, we employ
the duplicate replacement strategy. Our core idea is that flows
requested multiple times are likely to experience greater con-
gestion and are more prone to subsequent retransmission re-
quests. Consequently, maintaining more copies of these flows
is more effective for meeting retransmission needs. Therefore,
we adopt the Least Frequently Used (LFU) replacement strat-
egy. NetRT tracks the number of retransmission requests per
flow at SrcToR. Upon receipt of a packet at the ToR switch, it

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

Waiting

ReTx

PSN = ePSN

PSN ≠ ePSNPSN = ePSN

Ordered

Reordering

buffer remaining

Fig. 4: State machine for retransmission, which transfers at
every packet received.

is copied and added directly to the pool if the duplicate pool
is not at capacity. If the duplicate pool is full, NetRT removes
the oldest duplicate of the flow with the fewest requests and
replaces it with the newly arriving packet.

2) Ternary State Machine for Retransmission: NetRT veri-
fies the order of incoming packets on DstToR and selectively
requests retransmission in case of packet loss. We primarily
use two data structures: ePSN, representing the expected PSN
for a flow, and bitmap which tracks packet arrivals following
the ePSN. The bitmap is set to 128 bits, which allows it to
accommodate the BDP of networks. Each bit in the bitmap is
set to 1 to indicate an arrival.

DstToR must accurately determine whether to forward or
block a packet. We thus design a ternary state machine, shown
in Fig. 4, to guide the actions of the switch. The transmission
states include the Ordered state, which indicates that traffic
arrives in the correct order; the ReTx state, which indicates
that in-network recovery is in progress; and the Waiting
state, which indicates that NetRT is unable to achieve in-
network recovery, thus switching to end-retransmission mode.

In the Ordered state, an incoming packet is directly
forwarded if its PSN matches the ePSN. If the PSN is greater
than the ePSN, a disorder is detected, and the state transitions
to ReTx. Subsequently, the DstToR buffers the out-of-order
packet, updates the bitmap, and sends a retransmission request
containing the ePSN and the bitmap to the DstToR. In the
ReTx state, NetRT continuously blocks incoming out-of-order
packets until the ePSN arrives. It then attempts to release the
reordering buffer in sequence, as illustrated in Algorithm 1.

Algorithm 1: Release Reordering Buffer

1 while bitmap & 0X01 do
2 forward(buffer.pop());
3 ePSN ← ePSN + 1;
4 bitmap = bitmap >> 1;

5 if bitmap = 0 then
6 state← Ordered; ▷ Reordering buffer is empty.

Once the reordering buffer is emptied (i.e., the bitmap value
of 0), the in-network recovery process is complete, and the
state transitions back to Ordered. If SrcToR lacks a duplicate
of the requested packet, the DstToR receives an unfulfilled
request message and transitions to the Waiting state. NetRT
in the Waiting state first forwards the out-of-order packet
with the smallest PSN in the reordering buffer to trigger end-
to-end GBN and then flushes the reordering buffer. In this
state, NetRT does not block out-of-order packets and waits
until the sender re-sends the expected packet, then transitions
the state to Ordered. The entire deployment logic of the
DstToR algorithm is detailed in Algorithm 2.

Algorithm 2: The Ternary State Machine Algorithm

1 Function HandleDataPacket(pkt):
2 if pkt.PSN > ePSN and state ̸= Waiting then
3 state← ReTx; ▷ Out-of-order
4 bitmap← bitmap &
5 1 << (PSN − ePSN − 1);
6 Buffer pkt and request retransmission at time

intervals;
7 else if pkt.PSN = ePSN then
8 ePSN ← ePSN + 1;
9 forward(pkt);

10 if state = ReTx then
11 Release reordering buffer;

12 else if state = Waiting then
13 state← Ordered;

14 Function HandleNetRTMessage(pkt):
15 if pkt.unfulfilledPSN = ePSN then
16 state← Waiting;
17 forward(buffer.pop()); ▷ Triggering end ReTx.
18 buffer.clear();
19 bitmap← 0;

3) Retransmission Event and In-network Congestion Avoid-
ance: When an incast occurs, it often results in a large
number of consecutive packet losses. If these lost packets are
retransmitted continuously, it can trigger further congestion,
leading to significant performance degradation. To address
this, we design in-network congestion avoidance to select the
retransmission rate Rr. The congestion avoidance logic of
NetRT can be shown in Fig. 5. We define two thresholds:
Kl and Kh. When the number of retransmitted packets N
is less than Kl, indicating that the current congestion level
is insignificant, NetRT sends the requested packet at the line
rate Rl. When the retransmission data exceeds Kl, it indicates
large congestion at the bottleneck and continuous packet loss.
In this case, NetRT performs in-network congestion avoidance
using the following formula:

Rr = max{Rmax
a − (N −Kl)(R

max
a −Rmin

a)

Kh −Kl
, Rmin

a },

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

𝐾𝑙 𝐾ℎ

𝑅𝑟

𝑅𝑙

𝑁

𝑅𝑎
𝑚𝑖𝑛

𝑅𝑎
𝑚𝑎𝑥

Pause sender

Fig. 5: Logic of NetRT’s retransmission rate adjustment.

where Rmax
a and Rmin

a are the upper and lower bounds for
retransmission rate adjustment. NetRT pauses the correspond-
ing sender and sends retransmission packets at a low rate that
decreases linearly with the amount of requested data. We use
the original PFC pause frame, which is utilized only between
senders and ToRs, thus avoiding the defects of PFC.

D. Overhead and Feasibility Analysis

In this subsection, we analyze the memory overhead of
NetRT, illustrate its implementation details, and discuss its
feasibility.

1) Overhead Analysis: For SrcToR, the primary overhead is
attributed to the duplicate pool. From a pipeline perspective,
the data transmitted by a port within an RTT is one BDP,
regardless of the number of Queue Pairs (QPs). Therefore,
a port with 100 Gbps bandwidth and 5 µs RTT requires
less than 100 KB for duplicates. Another memory overhead
arises from recording request frequencies for the LFU strategy.
We use a 32-bit data structure, resulting in an overhead
of 40 KB for 10K QPs. At DstToR, the main overhead is
the reordering buffer. Out-of-order packets are forwarded or
dropped after at most one RTT, so similar to the duplicate
pool, the reordering buffer typically requires no more than 100
KB. Additionally, because NetRT interactions between ToRs
involve shorter paths and retransmitted packets travel with high
priority, DstToR consumes less memory. For SR-specific data
structures maintained by NetRT, the ePSN is identical to the
PSN field of the RDMA transport header, using 24 bits, with
a bitmap of 128 bits and a retransmission state identifiable
by 2 bits. With 10K QPs, the overhead is less than 200 KB.
Table II summarizes the overhead of NetRT. In conclusion,

TABLE II: Memory overhead of data structures required by
NetRT under 100 KB BDP and 10K QPs.

Component Data Structures Memory Overhead

SrcToR Duplicate Pool 100 KB
Request Frequency 40 KB

DstToR

Reordering Buffer 100 KB
ePSN 30 KB
bitmap 160 KB
state 2.5 KB

the primary overhead of NetRT involves traffic replication
and storage. Existing programmable switches typically have
sufficient space to accommodate the data overhead of a BDP.
Therefore, the overhead of NetRT is tolerable.

2) Implementation Details and Feasibility: We implement
NetRT in 800 lines of code on our testbed based on DPDK.
For NetRT interaction messages, we insert customized fields.
The retransmission request message adds 20 bytes, containing
one byte for the message type, 24 bits for the ePSN, and 128
bits for the bitmap. The unfulfilled request message adds only
4 bytes for the message type and unfulfilled request number.
The messages traverse the network at the address of the flow
served and are dropped at the opposite ToR, thus not affecting
the end RNICs.

The SrcToR and DstToR algorithms are deployed in the
switch Memory Management Unit (MMU). Modern data cen-
ter switches typically have multiple queues; we reserve one
queue for the duplicate pool. When a packet passes through
the ingress queue, the switch creates a replica using the
multicast function and adds it to the duplicate pool queue. For
duplicate retention, existing programmable switches provide
advanced flow control primitives [17], [22]. The main feature
of the DstToR algorithm is reordering. The reordering buffer
uses a separate queue similar to the duplicate pool and is
blocked based on flow control. The position of out-of-order
packets corresponds to the bitmap, thus realizing low-overhead
sequential release of the buffer as shown in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of NetRT
through our testbed and ns-3 [20] simulations. We focus
on validating that NetRT can effectively achieve in-network
packet loss recovery with acceptable overhead, provide high
out-of-order tolerance, and ultimately reduce end retransmis-
sions and shorten Flow Completion Time (FCT).

We compare NetRT with GBN, GBN combined with PFC,
and IRN [15], which are the default retransmission mechanism
for RNICs, the mainstream RoCE solution, and the advanced
SR-based solution, respectively. For NetRT, the high and low
thresholds associated with congestion avoidance are set to 20
KB and 100 KB, respectively, based on our experience. The
rate at which retransmission is limited varies from 1% to 50%
of the bandwidth. The parameters for other solutions are set
following their respective papers.

A. Testbed Evaluation

1) Testbed Setup: Our testbed consists of five nodes ar-
ranged in a chain topology. We designate the nodes at the two
ends as a sender and a receiver connected to the core switch
in the middle via the ToR nodes. Each node is equipped with
a Core i5-11500 processor, 64 GB of DDR4 RAMs, and Intel
E810 10GbE NICs [29]. We deploy the stack and implement
NetRT based on DPDK [30]. At the end nodes, the GBN
retransmission mechanism is employed.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

0.1% 0.5% 1% 5%
50

100
150
200
250
300
350 25%~75%

 Range within 2IQR
 Mean Outliers
 RoCE NetRT

Loss Rate

FC
T (

us
)

(a) Short flow (10 KB).

0.1% 0.5% 1% 5%

500
1000
1500
2000
2500
3000

Loss Rate

FC
T (

us
)

 25%~75%
 Range within 2IQR
 Mean Outliers
 RoCE NetRT

(b) Medium flow (100 KB).

0.1% 0.5% 1% 5%
1000
2000
3000
4000
5000
6000
7000
8000

Loss Rate

FC
T (

us
)

 25%~75%
 Range within 2IQR
 Mean Outliers
 RoCE NetRT

(c) Long flow (1 MB).

Fig. 6: FCTs for different sized flows with different packet loss rates.

2) Evaluations: We set up random packet loss at the core
switch. We evaluate the solution at four packet loss rates:
0.1%, 0.5%, 1%, and 5%. The sender transmits data to the
receiver in sizes including 10 KB, which is smaller than a
BDP, 100 KB, which lasts for multiple RTTs, and the larger 1
MB. We perform 200 experiments for each group; the results
are shown in Fig. 6.

For short flows, packet loss primarily affects the tail FCT,
as shown in Fig. 6(a). For example, at a 1% packet loss
rate, retransmission occurs in approximately one out of every
ten short flows on average. The victimized flow is forced
to undergo more transmission time, raising more outliers.
As the flow size increases, the occurrence of packet loss
in each transmission becomes more frequent, resulting in
an overall increase in average delay. When a connection
experiences multiple packet losses, e.g., 100 KB of data at
a 5% loss rate and 1 MB with over 0.1% loss rate, the GBN
retransmission mechanism cannot effectively cope with out-
of-order packets, triggering multiple backtracks and wasting
bandwidth resources. As shown in Figs. 6(b) and 6(c), the
average FCT doubles with the increase in packet loss. In
contrast, NetRT provides in-network packet loss recovery that
greatly improves performance. NetRT significantly reduces tail
FCT for short flows and average FCT by up to nearly 75% for
medium and long flows. In particular, as the packet loss rate
increases, NetRT shows consistent performance and does not
exhibit a significant increase in FCT as observed with GBN.

To evaluate the memory overhead of NetRT, we also track
the occupancy of the duplicate pool and the reordering buffer

0 100 200 300 400 500 600 7000
50
100
150
200
250
300

Ov
erh

ea
d (

KB
)

� � � � � � 	 � �

(a) Duplicate Pool.

0 40 80 120 640 6800
10
20
30
40
50
60

Ov
erh

ea
d (

KB
)

� � � � � � 	 � �

(b) Reordering Buffer.

Fig. 7: Memory overhead of NetRT duplicate pool and
reordering buffer.

(shown in Fig. 7). The duplicate pool grows with traffic input
and then reaches a steady state. The overhead at steady state
is around 128 KB. As for the reordering buffer, its overhead
only appears when packet loss occurs. The peak is 37 KB,
and the average is 15 KB. Therefore, the overhead of NetRT
is acceptable in real deployments.

B. Micro-benchmarks

We further use simulations to build more complex topolo-
gies to validate NetRT’s handling of congestion loss and
cooperation with fine-grained load balancing.

1) Congestion Loss: We build a many-to-one scenario to
generate network congestion to verify the effectiveness of
NetRT in lossy networks. In this scenario, each server is
connected to a core switch via its ToR switch. The link
bandwidth is set to 50 Gbps, and the RTT is about 5 µs.
Senders transmit 500 KB of data sequentially to a single
receiver at 10 µs intervals, creating continuous traffic bursts.
We use DCQCN [5] as the congestion control algorithm. We
vary the number of senders from 15 to 50 and measure the
FCT for each solution.

Fig. 8 shows the average and tail FCT. As the number of
concurrent flows increases, the network congestion escalates,
leading to a high loss rate in lossy networks. The end-to-end
GBN retransmission mechanism becomes inefficient, causing
a significant drop in effective throughput and resulting in
high FCT. By constructing a lossless network, PFC avoids the
impact of congestion loss, offering an average FCT reduction
of 25% to 35%. Due to the performance impairments of PFC,
IRN chooses to deploy efficient SR in lossy networks. IRN
significantly improves FCT and maintains stable performance
as the number of flows increases. From feasibility considera-
tions, NetRT deploys SR between programmable ToRs and
benefits from a shorter packet loss recovery path. Due to
the in-network congestion avoidance design, NetRT adapts to
the increased network congestion and enables consistent high
performance. As illustrated in Fig. 8, NetRT provides 34% to
47% improvement in the average FCT and 14% to 34% in the
tail FCT compared to GBN.

2) Multipath Disorder: In data centers, multiple viable
paths exist between servers, and load balancing may result in
out-of-order packets by spreading packets from the same flow

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

15 20 25 30 35 40 45 5001
23
45
67
8

Av
g.

FC
T (

ms
)

Number of Flows

 GBN PFC IRN NetRT

(a) Average FCT versus number of concurrent flows.

15 20 25 30 35 40 45 5001
23
45
67
8

Ta
il F

CT
 (m

s)

Number of Flows

 GBN PFC IRN NetRT

(b) Tail FCT versus number of concurrent flows.

Fig. 8: Average and tail FCT with a different number of flows.

over different paths. We thus evaluate NetRT’s ability to handle
packets arriving out of order. We set up 15 senders connected
to multiple core switches via a ToR switch, transmitting 1 MB
of data to a single receiver. Consequently, there are several
available paths for each flow to reach the receiver. We use
ECMP [31] as the baseline and DRILL [11] that uses per-
packet switching as the fine-grained load-balancing algorithm.
We vary the number of available paths and compare the
behavior of RoCE with and without NetRT.

Fig. 9 illustrates the average and tail FCT for each solution.
As a benchmark solution, ECMP exhibits decreasing FCT with
increasing available paths due to the reduced load on each
path. However, when a fine-grained scheme is enabled, the out-
of-order packets caused by switching paths result in undesired
performance degradation. As the number of available paths
increases, the network conditions become more complex, lead-
ing to increased performance impairments, which ultimately
doubles the average FCT and increases the tail FCT by 61%.
To further understand the impact, we count the number of
load-balancing switching paths and the number of triggered
retransmissions of RNICs, as shown in Table III. With the
adoption of DRILL, an average of 68.8 path switches occur,
resulting in approximately five retransmissions per 100 pack-
ets. Due to the lack of reordering capability of GBN, constant
retransmissions cause a drop in effective throughput and longer
FCT. In contrast, NetRT enables strong disorder tolerance and
ensures that switching does not trigger end retransmission,
enhancing transmission efficiency. Compared to the DRILL
without NetRT, it reduces the average FCT by 37%∼60%
and the tail FCT by 40%∼52%. Additionally, this result also
proves that NetRT can work better with fine-grained load-
balancing schemes for better link utilization. Compared to

ECMP, DRILL with NetRT provides 11%∼17% average FCT
reduction and up to 29% tail FCT reduction.

C. Large-scale Simulations

We further use large-scale simulations to evaluate NetRT.
The topology used is a two-level fat-tree [32]. We set up 4
core switches with 16 ToR switches fully connected. Each ToR
switch connects to 32 servers, totaling 512 servers across the
topology. The links between the core switches and the ToRs
are 100 Gbps, and the ToRs have 50 Gbps links connecting
to the servers. DCQCN is the congestion control algorithm
at the ends, and we use ECMP as the load-balancing algo-
rithm. Traffic generation follows a Poisson distribution, with
each sender randomly selecting its destination. The flow size
distribution is based on WebSearch traffic [33].

We measure average and 90th percentile FCT, and the re-
sults are shown in Fig. 10. Due to the inefficient GBN retrans-
mission mechanism, RNICs have a low tolerance for network
packet loss. Once network congestion and packet loss occur,
it leads to a decrease in effective throughput and an increase
in the FCT. As shown in Figs. 10(a) and 10(b), it exhibits the
worst average FCT when no other mechanism is adopted. PFC
prevents queue overflow and enables lossless networking by
suspending the upstream queue, therefore effectively avoiding
low effective throughput due to frequent backoffs. In this
experimental scenario, PFC reduces the average FCT for the
traffic by a maximum of 16.7%. However, the back-pressure
feature of PFC and the congestion spreading problem lead to
queue buildup, which particularly affects the performance of
short flows. For instance, for the short flows of 10 KB, PFC
increases the average transmission time by 10%. In addition,
PFC primarily affects the tail delay performance. As shown in
Fig. 10(c), short flows with PFC exhibit high tail delays, up to
more than twice that of GBN. IRN and NetRT deploy efficient
selective retransmission, enabling high packet loss recovery
capability. IRN has advantages in shortening the FCT of short

2 4 6 80
2
4
6
8

10

FC
T (

ms
)

Number of Available Paths

ECMP (baseline)
DRILL w/o NetRT
DRILL w/ NetRT

(a) Average FCT.

2 4 6 80
2
4
6
8

10

FC
T (

ms
)

Number of Available Paths

ECMP (baseline)
DRILL w/o NetRT
DRILL w/ NetRT

(b) Tail FCT.

Fig. 9: Average and tail FCT under multipath disorder.

TABLE III: Average number of switching paths and end
retransmissions per flow per 100 KB of data for each solution.

Switching Path End GBN

RoCE w/o NetRT 68.8 5.1
RoCE w/ NetRT 59.3 0

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

10KB 20KB 30KB 80KB0.00
0.01
0.02
0.03
0.04

FC
T (

ms
)

Flow Size

 GBN
 PFC
 IRN
 NetRT

(a) Average FCT of short flow.

1MB 2MB 5MB 10MB0
2
4
6
8

10
12

FC
T (

ms
)

Flow Size

 GBN
 PFC
 IRN
 NetRT

(b) Average FCT of long flow.

10KB 20KB 30KB 80KB0.00
0.02
0.04
0.06
0.08

FC
T (

ms
)

Flow Size

 GBN
 PFC
 IRN
 NetRT

(c) 90th percentile FCT of short
flow.

1MB 2MB 5MB 10MB0
4
8

12
16
20

FC
T (

ms
)

Flow Size

 GBN
 PFC
 IRN
 NetRT

(d) 90th percentile FCT of long
flow.

Fig. 10: Average and 90th percentile FCT of WebSearch traffic load under GBN, PFC, IRN, and NetRT.

flows and offers up to 30% improvement. However, IRN uses a
BDP-based flow control mechanism to limit the number of in-
flight packets, which may result in impaired throughput in long
flows, and thus slightly lower performance than NetRT in long
flows. NetRT reduces the number of end retransmissions and
enhances transmission efficiency with high feasibility through
its in-network recovery strategy. NetRT reduces average FCT
by 13.5% to 24.5% for short flows and reduces tail FCT by
up to 46.8%. As the flow size increases, the transmission time
spans more RTTs, and congestion control takes effect, so the
impact of packet loss decreases, but NetRT still maintains
optimal FCT performance.

V. RELATED WORK

In this section, we present works aimed at enhancing the
transmission robustness of RoCE.

Constructing Lossless Networks. Given that RNICs strug-
gle with out-of-order packets, RoCE introduces PFC [6] to
construct lossless in the initial deployment phase. With the
revelation of PFC’s performance impairments, some solutions
aim to reduce PFC triggering. These solutions target sup-
pressing switch queue lengths by utilizing precise congestion
signals, shortening control loops, and performing accurate
rate adjustments, as exemplified by HPCC [34], RoCC [35],
and Bolt [36]. Besides, some solutions attempt to refine the
flow control mechanism to avoid PFC’s drawbacks. GFC [9]
manipulates the port rate at a fine granularity to solve network
deadlocks. BFC [37] provides per-hop per-flow flow control
to mitigate congestion spread.

Enhancements for RNICs. Rather than relying on PFC,
several solutions explore the possibility of running RDMA
over lossy networks. Their core idea is to replace GBN with ef-
ficient SR on RNICs with limited hardware resources. MELO
[38] separates data and metadata and stores data off chips.
It avoids high on-chip overheads by placing buffers in user
space. IRN [15] carefully designs the data structures required
for retransmission, paired with BDP-based flow control to
bound the number of inflights, ultimately deploying SR with
less than 10% additional overhead. Flor [23], a framework for
heterogeneous networks, develops a software SR mechanism
regarding reliability, i.e., memory overhead uploading. SRNIC
[16] co-designs transport protocols and architectures to address
the overheads of SR deployment. Moreover, vendors like

NVIDIA are gradually introducing commodity RNICs with
SR support (e.g., ConnectX-6 [24]).

While these solutions significantly improve transmission
robustness, the complexity and expense caused by updating
architectures and replacing devices show significant problems.

In-network Assistance for Reliability. Noting the poten-
tial for in-network assistance, some solutions enable switches
to carry out reliability functions. SQR [39] and LinkGuardian
[22] guarantee link-level reliability through retransmissions
between switches upstream and downstream of links. SQR
focuses on link failure detection and packet in-network re-
covery. LinkGuardian addresses random packet loss due to
link corruption. Both solutions lack end-to-end performance
guarantees. SLR [14] switch accelerates end retransmissions
by actively sending NACKs to reduce flow completion time.
ConWeave [13] performs reordering after rerouting on ToR
switches to achieve better load-balancing results without out-
of-order. However, ConWeave assumes a lossless network and
relies on PFC.

VI. CONCLUSION

In this paper, we discussed the necessity of enhancing
RDMA resilience and the deployment limitations of existing
solutions for improving RNICs. To solve this dilemma, we
proposed NetRT, an innovative in-network retransmission of-
floading solution deployed on Top-of-Rack (ToR) switches.
By leveraging the relatively abundant memory resources and
programmable features of modern switches, NetRT performs
transparent and efficient ToR-to-ToR selective retransmission
to enhance RDMA transmission efficiency without requiring
hardware modifications to RNICs. We implemented NetRT
on our testbed, demonstrating its feasibility and acceptable
overhead. Extensive simulation experiments show that NetRT
effectively copes with various packet loss and out-of-order
cases, significantly reducing flow completion time.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
constructive comments. This work is supported in part by the
National Natural Science Foundation of China under Grant
No. 62302472, Youth Innovation Promotion Association of
the Chinese Academy of Sciences (CAS) under Grant No.
Y202093, and JSPS KAKENHI under Grant No. JP19H04105.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network aggregation for multi-tenant learning,” in Proceedings
of the 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2021, pp. 741–761.

[2] W. Wang, M. Moshref, Y. Li, G. Kumar, T. S. E. Ng, N. Cardwell, and
N. Dukkipati, “Poseidon: Efficient, robust, and practical datacenter CC
via deployable INT,” in Proceedings of the 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2023, pp.
255–274.

[3] Y. Dong, Y. Dai, M. Xie, K. Lu, R. Wang, J. Chen, M. Shao, and
Z. Wang, “Faster and scalable MPI applications launching,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 2, pp.
264–279, 2024.

[4] “NVIDIA Mellanox ConnectX-5,” https://www.nvidia.com/en-us/
networking/ethernet/connectx-5/, accessed on July 2024.

[5] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale RDMA deployments,” in Proceedings of the 2015 ACM Special
Interest Group on Data Communication (SIGCOMM), 2015, pp. 523–
536.

[6] “IEEE 802.1 Qbb - Priority-based Flow Control,” https://1.ieee802.org
/dcb/802-1qbb/.

[7] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting
congestion management in lossless ethernet,” in Proceedings of the 17th
Usenix Symposium on Networked Systems Design and Implementation
(NSDI), 2020, pp. 19–36.

[8] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in lossless
networks,” in Proceedings of the 2021 ACM Special Interest Group on
Data Communication (SIGCOMM), 2021, pp. 370–383.

[9] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: avoiding
deadlock in lossless networks,” in Proceedings of the 2019 ACM Special
Interest Group on Data Communication (SIGCOMM), 2019, pp. 75–89.

[10] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy, and
T. Anderson, “Understanding and mitigating packet corruption in data
center networks,” in Proceedings of the 2017 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2017, pp.
362—-375.

[11] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,” in
Proceedings of the 2017 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2017, pp. 225—-238.

[12] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it
flow: Resilient asymmetric load balancing with flowlet switching,” in
Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 407–420.

[13] C. H. Song, X. Z. Khooi, R. Joshi, I. Choi, J. Li, and M. C.
Chan, “Network load balancing with in-network reordering support for
RDMA,” in Proceedings of the 2023 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM), 2023, pp. 816–
–831.

[14] Q. Meng, Y. Zhang, S. Zhang, Z. Wang, T. Zhang, H. Luo, and
F. Ren, “Switch-assistant loss recovery for RDMA transport control,”
IEEE/ACM Transactions on Networking, vol. 32, no. 3, pp. 2069–2084,
2024.

[15] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy,
S. Ratnasamy, and S. Shenker, “Revisiting network support for rdma,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2018, pp. 313—-326.

[16] Z. Wang, L. Luo, Q. Ning, C. Zeng, W. Li, X. Wan, P. Xie, T. Feng,
K. Cheng, X. Geng, T. Wang, W. Ling, K. Huo, P. An, K. Ji, S. Zhang,
B. Xu, R. Feng, T. Ding, K. Chen, and C. Guo, “SRNIC: A scalable
architecture for RDMA NICs,” in Proceedings of the 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2023, pp. 1–14.

[17] “Intel Tofino 2,” https://www.intel.com/content/www/us/en/products/
sku/218647/intel-tofino-2-6-4-tbps-4-pipelines/specifications.html,
accessed on July 2024.

[18] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2019, pp. 1–
16.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[20] “Network Simulator 3,” https://www.nsnam.org/about/, accessed on July
2024.

[21] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen,
“Deadlocks in datacenter networks: Why do they form, and how to
avoid them,” in Proceedings of the 15th ACM Workshop on Hot Topics
in Networks (HotNet), 2016, pp. 92–98.

[22] R. Joshi, C. H. Song, X. Z. Khooi, N. Budhdev, A. Mishra, M. C.
Chan, and B. Leong, “Masking corruption packet losses in datacenter
networks with link-local retransmission,” in Proceedings of the 2023
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM), 2023, pp. 288–304.

[23] Q. Li, Y. Gao, X. Wang, H. Qiu, and et.al., “Flor: An open
high performance RDMA framework over heterogeneous RNICs,” in
Proceedings of the 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2023, pp. 931–948.

[24] “NVIDIA Mellanox ConnectX-6,” https://www.nvidia.com/en-us/
networking/ethernet/connectx-6-dx/, accessed on July 2024.

[25] “Trident-3,” https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56870-series, accessed on July 2024.

[26] “NVIDIA Mellanox Spectrum-3,” https://network.nvidia.com/files/doc-
2020/pb-spectrum-3.pdf, accessed on July. 2024.

[27] “Tomahawk 4,” https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-series, accessed on July
2024.

[28] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2019, pp. 1–
16.

[29] “Intel Ethernet Network Adapter E810,” https://www.intel.com/content
/www/us/en/products/details/ethernet/800-network-adapters/e810-
network-adapters/products.html, accessed on July 2024.

[30] “DPDK,” https://www.dpdk.org/about/, accessed on July 2024.
[31] C. Hopps, “RFC2992: Analysis of an equal-cost multi-path algorithm,”

2000.
[32] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient

supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, 1985.

[33] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proceedings of the 2010 ACM Special Interest Group
on Data Communication (SIGCOMM), 2010, pp. 63–74.

[34] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: High precision
congestion control,” in Proceedings of the 2019 ACM Special Interest
Group on Data Communication (SIGCOMM), 2019, pp. 44–58.

[35] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster,
and T. Edsall, “RoCC: Robust congestion control for RDMA,”
in Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT), 2020, pp. 17–
30.

[36] S. Arslan, Y. Li, G. Kumar, and N. Dukkipati, “Bolt: Sub-RTT
congestion control for Ultra-Low latency,” in Proceedings of the 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2023, pp. 219–236.

[37] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
“Backpressure flow control,” in Proceedings of the 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2022, pp. 779–805.

[38] Y. Lu, G. Chen, Z. Ruan, W. Xiao, B. Li, J. Zhang, Y. Xiong,
P. Cheng, and E. Chen, “Memory efficient loss recovery for hardware-
based transport in datacenter,” in Proceedings of the First Asia-Pacific
Workshop on Networking (APNet), 2017, pp. 22—-28.

[39] T. Qu, R. Joshi, M. C. Chan, B. Leong, D. Guo, and Z. Liu, “SQR:
In-network packet loss recovery from link failures for highly reliable
datacenter networks,” in Proceedings of the IEEE 27th International
Conference on Network Protocols (ICNP), 2019, pp. 1–12.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 20,2026 at 02:45:07 UTC from IEEE Xplore. Restrictions apply.

