
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024 3919

ProactMP: A Proactive Multipath Transport
Protocol for Low-Latency Datacenters
Rui Zhuang , Graduate Student Member, IEEE, Jiangping Han , Member, IEEE,

Kaiping Xue , Senior Member, IEEE, Jian Li , Senior Member, IEEE, Qibin Sun , Fellow, IEEE, and Jun Lu

Abstract—With the development of datacenter networks
(DCNs) towards high bandwidth and low latency, the demands
of high-level datacenter applications are heading towards high
performance and high reliability, which makes traffic congestion
one of the most notable problems in DCNs and brings new
challenges to transport protocols. Proactive transport protocols
are gaining prevalence due to their ability to provide accurate
feedback and precise end-to-end control, while multipath trans-
mission is having a broader application space in the multi-path
topology of large-scale DCNs. However, these advanced transport
protocols aim to improve their performance by addressing
some specific congestion problems, but fail to handle multiple
congestion problems caused by incast, high workload and load
imbalance. Their performance in terms of flow completion
time (FCT), delay, robustness, and balance still has room for
further improvement. In this paper, we propose ProactMP,
a novel proactive multipath transport protocol for further
improvement of datacenter communications. ProactMP utilizes
the rich resources of parallel paths in modern DCN and
spreads the load across available network paths to improve
network efficiency. ProactMP deploys a credit-based bandwidth
allocation strategy to achieve low delay and zero packet loss, and
overcommits receiver downlinks to ensure high link utilization.
We have implemented ProactMP in the Linux system. Our
testbed experiments show that ProactMP outperforms the TCP
variants, MPTCP variants and a leading proactive transport
protocol in FCT, link utilization, fairness and latency.

Index Terms—Datacenter network, proactive transport,
multipath transmission, transport protocol, multipath TCP.

I. INTRODUCTION

DATACENTER has become an indispensable infrastruc-
ture in modern networks. Currently, the scale and

link speed of datacenter networks (DCNs) are expanding
continuously [1], with Internet traffic experiencing exponen-
tial growth. High-performance datacenters contain a large
scale of nodes up to 10k∼100k. With the availability of
next-generation 100Gbps spine blocks, advanced aggregation

Manuscript received 10 May 2023; revised 25 December 2023; accepted
28 April 2024. Date of publication 9 May 2024; date of current ver-
sion 21 August 2024. This work is supported in part by the National
Natural Science Foundation of China (NSFC) under Grants No. 62302472
and No. 62201540, the Fundamental Research Funds for the Central
Universities under grant No. WK2100000039, and Youth Innovation
Promotion Association of Chinese Academy of Sciences (CAS) under Grant
No. Y202093. The associate editor coordinating the review of this article
and approving it for publication was R. Birke. (Corresponding authors:
Jiangping Han; Kaiping Xue.)

The authors are with the School of Cyber Science and Technology,
University of Science and Technology of China, Hefei 230027, China
(e-mail: jphan@ustc.edu.cn; kpxue@ustc.edu.cn).

Digital Object Identifier 10.1109/TNSM.2024.3399028

blocks can support 51.2Tbps of burst bandwidth while achiev-
ing ultra-low latency that reaches microsecond (µs) level [2].
These performance metrics of high bandwidth and low latency,
along with the traffic characteristics in DCNs, create new
operating conditions for network transport protocols, but also
introduce new challenges and some unique problems.

Due to the deployment of high-speed, large-scale and low-
latency DCNs, traffic congestion has become one of the
most important problems in DCNs, which seriously affects
the transmission performance and brings more challenges to
congestion control [3]. There are three common congestion
problems in DCNs, which are illustrated in Fig. 1.

The first and the third congestion problems in Fig. 1 occur
in Top of Rack (ToR) uplink port and ToR downlink port,
respectively, and are mainly caused by traffic incast. Incast
happens when multiple senders send “fan-out” requests to
many workers, which respond simultaneously with “fan-in”
responses, resulting in a drastic decrease in throughput and
gross under-utilization of link capacity in many-to-one and
many-to-many communication modes [4]. Meanwhile, the
shallow switch buffer at the receiver end is more prone to
congestion and overflow when handling incast traffic [5],
which greatly increases the queuing delay and makes it more
challenging to meet the requirement of ultra-low delay [6].
The second congestion problem exists in spine downlink port.
Due to the growing need for network bandwidth to handle
cloud applications, mixed media downloads and uploads, etc.,
spine blocks have become the dominant bottleneck that limits
the compute power and server capacity of DCNs with Clos
topologies [7], insufficient bandwidth or collapse of spine
blocks will lead to waste of expensive server capacity and
system imbalance [2]. However, imbalances still persist in
datacenter fabrics. As observed in [8], some ToR switch
ports and fabric switches are busy while their equivalents are
relatively idle. Therefore, distributing traffic to different spine
blocks to reduce imbalance and avoid congestion is of great
significance for improving the effective capacity of network
and ensuring user experience.

Numerous proposals have been proposed in recent years to
overcome the above problems and obtain better transmission
performance in DCNs, including new architectural designs [2],
improved TCP variants [6], [9], [10], and various new proto-
cols [11], [12], [13], [14], among which emerging proactive
transport protocols driven by the receiver get increasing
attention from academia due to their unique designs and
advantages. In proactive transport, link capacity is allocated

1932-4537 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2993-9316
https://orcid.org/0000-0003-1674-8884
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-6979-4510
https://orcid.org/0000-0002-6789-7460
https://orcid.org/0009-0006-0303-4208

3920 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Fig. 1. Three common congestion problems in DCNs and their causes.

proactively to each active sender as credits, either by receivers
or a centralized controller, which ensures that senders can
send packets at the optimal shared link rate to ensure high
bandwidth utilization, low queuing delay, and zero packet loss.
Therefore, existing proactive transport protocols are efficient in
solving the first and the third congestion problems. However,
as existing proactive transport protocols are limited to single-
path transmission, their gains in efficiency and reliability
are still limited, and cannot effectively solve the second
congestion problem. When a certain spine block is congested
or suffers path collapse, they cannot seamlessly utilize the
bandwidth on the equivalent blocks with good link states,
resulting in throughput loss. Therefore, a practical solution that
simultaneously takes delay, incast, robustness and balance into
account is still in urgent need.

Multipath transmission enables a connection to utilize
multiple paths in parallel, which brings benefits in load
balancing, resource utilization, and connection resilience.
Therefore, multipath transmission has great potential in solv-
ing the second congestion problem. As the topology of
DCNs heading towards multi-path topologies [15], [16], [17],
[18], multipath capabilities have a broader application space,
creating new conditions for further improvement of the trans-
mission performance in DCNs. However, the performance
of existing multipath transport protocols, represented by
MultiPath TCP (MPTCP) [14], is unsatisfactory in DCNs.

First, the congestion control of MPTCP mainly responds to
feedback information, such as network states and variations.
However, the delay of feedback can seriously reduce the
effectiveness of control strategies in DCNs with low latency
and shallow buffer, and easily lead to buffer overflow and
increased Round-Trip Time (RTT). Especially when incast
occurs, concurrent data from multiple servers can quickly fill
up the switch buffer, resulting in heavy loss of packets and
timeouts. Therefore, existing multipath transmission does not
effectively address the first and third congestion problems.
Second, although MPTCP can achieve higher aggregate band-
width and provide stable transmission for large flows, its gains
for small flows to occupy bandwidth and complete quickly are
very limited, making it difficult to handle the complex traffic
generated by modern datacenter applications.

In conclusion, practical transmission solutions that can
effectively address the three common congestion problems
remain absent in modern datacenters. From a multipath
perspective, the overall performance of proactive transport
protocols in DCNs still has room for further improvement,
that is, utilizing multipath capabilities to improve bandwidth
utilization and reliability. And the multipath transmission in

DCNs can also achieve more accurate congestion control by
referring to the control methods of proactive transports.

Therefore, in this paper, we combine multipath trans-
mission with proactive transport to effectively solve the
three congestion problems shown in Fig. 1. We design
ProactMP, a proactive multipath transport protocol for datacen-
ters. ProactMP provides connectionless transmission control
to achieve flexible and low-cost multipath management.
ProactMP seamlessly utilizes the rich bandwidth resources
of the multi-path topology in datacenters, and performs load
balancing and congestion migration between multiple paths
to improve overall performance. It also employs a receiver-
driven credit allocation method to control the amount of
in-flight data within an appropriate range, thereby addressing
the three common congestion problems in DCN transport. To
achieve the above-mentioned benefits, we design the important
operations and functions of ProactMP, including connection
initialization, subflow establishment, packet scheduling and
reassembling, coupled congestion control with overcommit-
ment, and loss recovery, to ensure efficient and correct data
transmission through multiple paths. We implement ProactMP
in the Linux system, and demonstrate its effectiveness com-
pared to both existing single-path and multipath protocols.
The experiments show that ProactMP achieves higher network
utilization to accelerate the completion time of different-sized
flows. Moreover, it reduces queuing delay and tail RTT to
diminish the impact of incast on transmission performance.

The main contributions of this paper are as follows:
• We propose a proactive multipath transport protocol

named ProactMP. ProactMP deploys packet scheduling,
coupled congestion control and loss recovery to aggregate
bandwidth from different paths and support data trans-
mission using parallel subflows.

• We design a receiver-driven control loop for ProactMP to
perform proactive congestion control. This loop enables
cooperation between the sender and receiver to allocate
network bandwidth to reduce queuing delay and buffer
overflow, and uses an overcommitment-based credit allo-
cation method to ensure high bandwidth utilization.

• We conduct a comprehensive evaluation of ProactMP
in our datacenter testbed. Experimental results show
that, compared with typical reactive transport protocols,
ProactMP improves the efficiency in completing small
flows and large flows by 17%∼175%. It reduces tail
RTT by 71%∼77% during incast events and also exhibits
better adaptability to complex and ever-changing network
traffic in practical applications. Furthermore, ProactMP
enhances the ability to utilize bandwidth and balance load
by utilizing multipath capabilities.

The rest of this paper is organized as follows: We introduce
the limitations of connection-oriented protocols in DCNs and
some related works in Section II. The detailed design of
ProactMP is proposed in Section III, including the basic
architecture, operations and functions of ProactMP. To val-
idate the effectiveness of ProactMP, we test ProactMP and
existing protocols in our self-constructed datacenter testbed,
and present the results and analysis in Section IV. At last,
conclusions and plans for future work are drawn in Section V.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3921

II. BACKGROUND AND RELATED WORK

Transmission Control Protocol (TCP) is one of the most
entrenched standards of the last forty years. Although TCP
has a long and successful history in the Internet and is the
protocol of choice for most datacenter applications, it faces
challenges in modern datacenter networks. TCP and MPTCP
introduce overheads at many levels [19], thereby limiting
the application-level performance. The datacenter environment
contains millions of cores and thousands of machines that
interact on microsecond timescales, which brings unprece-
dented challenges to reactive transport protocols. In this
section, we analyze the limitations and problems of reactive
transport protocols, represented by TCP, MPTCP, and their
enhancements, and then introduce the emerging proactive
transport protocols aiming to address these problems.

A. Limitations of TCP and MPTCP in Datacenter Networks

TCP is a connection-oriented protocol, which establishes
and uses a connection to ensure proper data transmission.
TCP provides reliable stream delivery services and is widely
used in Internet communications. However, this reliability
comes at the cost of maintaining a long-running state between
the client-server pair during the communication, resulting
in undesirable overhead for applications in datacenters that
could have hundreds or thousands of connections. Similarly,
as an extension of TCP, MPTCP faces the same problem as
TCP, with even higher space and time overheads due to the
necessity of maintaining multiple subflows. As a response to
these challenges, researches on connectionless protocols are
becoming more practical and valuable. Homa’s Linux imple-
mentation [19] provides a message-based API and implements
Remote Procedure Calls (RPCs) to eliminate the overheads
associated with connections.

In addition, the performance of TCP and MPTCP in DCNs
is compromised for several reasons. First, TCP and MPTCP’s
congestion controls (CCs) mainly react to feedback, such as
network states and variations. However, in DCNs, the feedback
delay can significantly reduce the effectiveness of control
strategies, leading to queue overflow and consequent RTT
increase. Some proposals adopt cautious adjustment methods
to converge slowly and accurately to the appropriate sending
rate, but at the cost of increasing the FCTs of large flows and
reducing the ability of small flows to compete for buffers [20].
Second, there are a wide variety of flows in DCNs, with
different sizes and different requirements. At present, applica-
tions that generate small flows predominate in real production
datacenters [20]. Although Raiciu et al. [21] proved that
using MPTCP in datacenters provides better performance and
robustness than single-path TCP, such gains are relatively
constrained and insufficient to support the complex types of
traffic generated by modern datacenter applications. MPTCP
ensures stable transmission for large flows by utilizing the
aggregate bandwidth and alleviate the uneven distribution of
network traffics. But unfortunately, it has limited effect on
small flows to occupy bandwidth or complete quickly. This is
because MPTCP’s first subflow has to perform slow start, and
its second subflow takes several RTTs from establishment to

data transmission, while small flows get no gain in this process
but a longer base delay caused by handshake and convergence.

B. Reactive and Proactive Transport Protocols

The common transport control schemes in DCNs can be
divided into two types: sender-driven control schemes based on
forward detection, and receiver-driven control schemes based
on reverse detection.

Currently, sender-driven control schemes are the mainstream
in DCNs. Transport protocols deployed with this kind of
scheme are reactive transport protocols. TCP, MPTCP
and their enhancements (e.g., DCTCP [6], TIMELY [22],
HPCC [9], PowerTCP [10] and DCQCN [23]) are typical
representatives. Their general method is to first build a model
through theoretical analysis, then heuristically adjust the send-
ing rate or congestion window (cwnd) at the sender based on
the network feedback (e.g., delay, packet loss, queue length,
Explicit Congestion Notification (ECN), and variations). For
example, DCTCP uses ECN to mark packets after the buffer
occupancy of switches exceeds a certain threshold, and adjusts
cwnd at the sender according to the proportion of marked
packets returned. However, due to the fact that reactive
transport protocols can only react after receiving feedback,
and feedback typically requires one RTT to reach the sender,
reactive transport protocols have limitations in DCNs. In
DCNs characterized by high bandwidth and traffic bursts, the
delay of one RTT can reduce the effectiveness of feedback,
making it difficult for sender-driven control schemes to adjust
cwnd based on current network states, and inevitably lead
to buffer backlog and congestion, as well as unstable queue
length and throughput loss.

In order to achieve low latency, low buffer occupancy, and
high network utilization to meet the increasing performance
requirements, proactive transport protocols that adopt
receiver-driven control schemes are booming in recent years.
The basic control principle of proactive transport proto-
cols is to explicitly allocate the bandwidth of bottleneck
links between active flows to prevent congestion proactively.
Typical proactive transport protocols adopt receiver-driven
control schemes, which regard bandwidth as credits, allowing
receivers to control the sending rate of credits according
to the acceptance ability of bottleneck links. Meanwhile,
senders can send a specified number of bytes only after
receiving credits, thereby preventing packets from accumu-
lating in the network and eliminating congestion proactively.
For example, Fastpass [24] implements a packet scheduling
strategy with global sense. ExpressPass [5] and pHost [11]
explicitly schedule the arrival of data packets from different
senders by controlling credits at the receiver. NDP [12] and
Homa [13] further improve the above methods by trimming
packets and using network priorities, respectively. Bolt [3]
utilizes programmable data planes to provide precise conges-
tion signals, and proactively generates granular feedback to
reduce the control loop delay to sub-RTT levels. Hostping [25]
automatically identifies the traffic source on overloaded links
by monitoring and diagnosing intra-host bottlenecks, thereby
improving network performance. Protego [26] implements

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3922 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

TABLE I
PACKET TYPES USED BY PROACTMP

a credit-based admission control strategy that regulates the
rate of incoming requests to a server based on marginal
improvements in throughput.

III. DESIGN OF PROACTIVE MULTIPATH

TRANSPORT PROTOCOL

As a proactive multipath transport protocol, ProactMP
aims to provide higher completion efficiency, higher effective
throughput, lower delay, and better robustness for transport
protocols in datacenters by utilizing proactive capabilities
and multipath capabilities. In this section, we introduce the
architectural, operational, and functional designs of ProactMP.

A. ProactMP: An Overview

Operates at the transport layer, ProactMP consists of the
proactive transport component and the multipath component,
where the proactive transport component performs the func-
tions of endpoint identification and message sending, and the
multipath component consists of a set of additional functions
over the proactive transport component to manage multiple
subflows with proactive transport below it.

To realize connectionless, ProactMP implements the
fundamental data transport through RPC, which uses a
request-response message-passing mechanism to accomplish
client-server interaction. Except for the Request message sent
from a client to a server and the returned Response message
that each RPC consists of, ProactMP mainly uses three packet
types to facilitate the operations of the sender and the receiver.
Table I explains the three packet types.

B. Important Operations in ProactMP

Connection initialization and subflow establishment are the
two important operations in ProactMP. Connection initializa-
tion refers to establishing a connection between host pairs
to support subsequent data transmission along with multiple
paths. Subflow establishment refers to selecting appropriate
paths among multiple paths to improve the efficiency and
reliability of data transmission.

1) Initiating a ProactMP Connection: Each ProactMP con-
nection initially starts with the first subflow and then adds
additional subflows. The Pro_Capable option will be carried
by the Request message, first DATA packet and returned
GRANT packet, so as to verify whether the remote host sup-
ports ProactMP and wants to select multipath working mode.
The detailed process of initiating a ProactMP connection is
illustrated in Fig. 2(a). It should be noted that the meaning of

Fig. 2. Detailed process and information of initiating a ProactMP connection
and starting a new subflow.

“connection” mentioned in this paper differs from that of TCP
or MPTCP. ProactMP’s connection is essentially a cluster of
identifiers (IDs), which is used to indicate which ProactMP
subflows are included in a ProactMP connection. Each subflow
has a unique ID and is associated with the message ID
to differentiate between different requests. ProactMP only
maintains the states of active subflows, and subflows belonging
to the same connection are mutually independent except for
some coupled controls.

After both of the communicating parties successfully con-
firm Pro_Capable, ProactMP establishes the first subflow and
enters ESTABLISHED state. Otherwise, if the remote host
does not support multipath transmission or does not want to
select multipath working mode, ProactMP returns to single-
path proactive transport. It is worth mentioning that the control
functions of ProactMP are the same for connections with only
one subflow and connections with multiple subflows.

2) Starting a New Subflow: Subsequent subflows can be
started and associated with a ProactMP connection after
its initial subflow is established. A path manager provides
functionalities for establishing, adding, and removing sub-
flows. To manage paths, each ProactMP endpoint maintains
a list of IP addresses, consisting of the IP addresses of
each interface, and establishes new subflows between different
source and destination IP address pairs based on the lists of
source and destination hosts. As shown in Fig. 2(b), during
the establishment of new subflows, the Pro_Join option will
be carried by the Request message, Response message, and
GRANT packet, which allows the communicating parties to
confirm the proper establishment of a new subflow.

When s host recognizes that a new subflow is established,
it confirms and stores the ID of this subflow and the ID of the
connection that advertises this subflow. ProactMP stores the
IDs of subflows, and associates them with connection IDs to
ensure that all advertised subflows are knowable and available
to the respective connection.

C. Functions Implemented in ProactMP

In order to manage multiple subflows and ensure suc-
cessful data transmission, ProactMP possesses the functions
of packet scheduling, data transmission and reassembling,
congestion control, and loss recovery. These functions work
synergistically to achieve optimal transmission performance.
Packet scheduling and data reassembling are basic to multipath

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3923

Fig. 3. Transmission process of data packets and the role played by the main
functions of ProactMP during this process (take a ProactMP connection with
two subflows as an example).

transmission, they ensure that packets can be balanced across
multiple paths and reassembled into complete messages in
sequence. Congestion control plays a crucial role in avoiding
packet loss and network congestion, thereby enhancing both
fairness and efficiency. Loss recovery serves as the last remedy
to ensure data correctness and integrity. The functional decom-
position of ProactMP as well as the transmission process of
data packets are illustrated in Fig. 3.

1) Packet Scheduling of ProactMP: Packet scheduling is
one of the key methods to improve the throughput of parallel
multipath transmission, especially in heterogeneous network
environments. The packet scheduler receives data from appli-
cations and sends them to each subflow after segmenting and
processing. Considering that ProactMP is mainly deployed in
datacenter networks, and adopts a credit-based control strategy
to effectively balance load and avoid buffer overflow, we
expect the quality difference between multiple paths to be
very small in ProactMP. Moreover, given that ProactMP is
connectionless and does not require ordered delivery of the
data, the major problem affecting the performance of parallel
multipath transmission, i.e., Head-of-Line (HoL) blocking, can
be negligible in ProactMP.

Therefore, we adopt a simplified design in ProactMP’s
scheduler for high bandwidth utilization and efficiency in the
common case. The scheduler of ProactMP first sends data
on subflows with the lowest RTT until the window with the
size of OWDbytes is filled, and then starts sending data on
subflows with the second lowest RTT, and so on. Packet
scheduling takes effect only for established subflows. If a
ProactMP connection has only one subflow, the scheduler will
keep sending data to this subflow until additional subflows are
established. The data amount of OWDbytes is calculated as:

OWDbytes = OWDbase · Bdl , (1)

where OWDbase is the base one-way delay (OWD) of the
client-server pair and Bdl is the bandwidth of the ToR
downlink. OWDbytes is used to ensure that senders transmit
enough bytes to cover the OWD between sender and receiver
without introducing additional delays.

2) Data Transmission and Reassembling of ProactMP: A
sender of ProactMP can transmit all its data through dif-
ferent subflows in parallel, and the data will be sorted and
reordered at the receiving end. Each DATA packet contains
the information of its offset and length, indicating the range
of bytes within this message. Therefore, ProactMP does not

require ordered delivery of the data, DATA packets can arrive
in any sequence, which effectively avoids the negative impact
of disorder caused by multipath transmission. ProactMP per-
forms protocol processing and message reassembly at the
receiver. The message data received from each subflow will be
uniformly stored in a list and sorted according to the offsets
carried in the packets. The receiver’s buffer is limited, if the
pool of unprocessed messages grows too large, ProactMP will
stop receiving data.

3) Coupled Congestion Control of ProactMP: Congestion
control in ProactMP is implemented on both the receiver
and sender sides. A receiver invites senders to transmit all
bytes in the message up to a given offset, and controls the
offset according to its acceptance ability. A sender allocates
the offset to each subflow based on the feedback from all
subflows, and instructs them to send an appropriate number
of bytes. Therefore, as shown in Fig. 3, ProactMP congestion
control consists of two components: the credit allocation
(pCA) component at the receiver, which allocates bandwidth
as credits to incoming flows, and the credit control (pCC)
component at the sender, which controls the data amount sent
by each subflow.

Allocating bandwidth as credits to senders ensures low
queuing delay and high link utilization, but accordingly also
brings the delay of at least one RTT for calculating and
delivering credits. With the rapid growth of DCN link rate, the
bandwidth wasted in the first RTT due to waiting is having
a greater impact on the completion efficiency of DCN flows.
Therefore, data should be sent immediately after the first
arrival rather than waiting for credits or grants [5], [24]. So far,
some existing proactive transport designs (e.g., Homa [13] and
Aeolus [27]) have shown that most flows in DCNs can benefit
from sending data immediately after arrive. They propose to
accelerate small flows by fully utilizing the spare bandwidth
in the first RTT. We adopt this design in ProactMP and divide
ProactMP congestion control into two phases: pre-grant phase
and granted phase.

1© Pre-grant phase: For the initially established subflow of
each ProactMP connection, the sender skips slow start and
enters pre-grant phase directly. It blindly sends OWDbytes
of data (unscheduled bytes) right after receiving a Request
message in the first RTT. Subsequently, the remaining bytes
are defined as scheduled bytes, and are transmitted only in
response to explicit GRANTs from the receiver. Such bursts
in the first RTT guarantee that bandwidth is not wasted due to
waiting for credits, thereby achieving shorter FCTs for small
flows. In most cases, the shared pools of buffers provided
by modern switches in datacenters are sufficient to hold the
burst bytes in the first RTT [19], [28]. And ProactMP limits
the amount of data blindly sent in pre-grant phase to a small
range, which prevents unscheduled bytes from excessive usage
of bandwidth and buffers [19].

2© Granted phase: In the subsequent RTTs, the sender stays
in granted phase and performs coupled congestion control.
Except for the first subflow used to initiate a ProactMP
connection, other subflows do not burst in the first RTT after
startup but wait for authorization before transmitting scheduled
packets. ProactMP does not use explicit acknowledgments.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3924 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

It allows the Response message to serve as an acknowl-
edgment for the request, and the GRANT packet to serve
as an acknowledgment for the data sent from the sender.
The receiver requests the transmission of scheduled bytes by
sending GRANT packets, prompting the sender to release
scheduled bytes upon receiving any GRANT.

ProactMP congestion control in granted phase relies on
the cooperation between sender and receiver. As depicted in
Fig. 3, to effectively support credit control (pCC) at the sender,
ProactMP first performs essential credit allocation (pCA) at the
receiver. On the one hand, the pCA component at the receiver
reasonably allocates credits according to its acceptance ability,
aiming to ensure that the bandwidth of ToR downlink is fully
utilized with no queue buildup, thus laying the foundation
for congestion control at the sender. On the other hand, the
primary role of the pCC component at the sender is to allocate
the total credits contained in a received GRANT packet to each
subflow, so as to achieve parallel transmission and congestion
migration between multiple subflows, thereby enhancing the
effective throughput and robustness of large flow transmission.

With the above thought, pCA and pCC components are
designed to work as follows:

pCA component: Each time the receiver receives data,
it allocates the amount of data that can be sent (i.e., the
total credits) in the next round according to the current
idle bandwidth, and returns this amount of data, repre-
sented as creditsall , to the sender along with the GRANT
packet. When allocating the total available credits, the
receiver considers connection k as a whole, without dis-
tinguishing specific subflows. The calculation method of
creditsall is given by Algorithm 1, which involves the design
of an overcommitment-based credit allocation method in
ProactMP. A detailed discussion of this method is provided in
Section III-C4.

pCC component: After receiving a GRANT packet, pCC
component at the sender undertakes the task of credit allo-
cation between subflows. Suppose connection k consists of n
subflows, and transmits data between hosts A and B. Every
subflow i ∈ k has a weight wi (i = 1, 2, . . . ,n), which is
initialized to 0 when a subflow is newly established. The RTT
of subflow i is defined as the time interval between the last
data sent and the GRANT packet obtained this time. Upon
receiving a GRANT packet, the sender becomes aware of the
status of each subflow and can identify the specific subflow
to which this GRANT belongs. On each received GRANT
belonging to subflow i, wi is increased by 1. The main role
of pCC is to allocate the total credits to all subflows of a
connection each time the sender receives a GRANT packet.
Suppose the sender receives a GRANT packet at time t,
which contains the total allocated credits creditsall . So for any
subflow r ∈ k, the credits allocated to subflow r is:

Gr
t = creditsall ·

wr
/
RTTr

2

∑n
i=1 wi

/
RTTi

2
, (2)

where Gr
t indicates the offset that subflow r is allowed to

send, and it will send Gr
t bytes of data in the next round.

When calculating Gr
t according to Eq. (2), the sender has

Algorithm 1: Credit Allocation Method Based on
Overcommitment at the Receiver

1 Upon receiving a Response message / DATA packet
from any sender:

2 begin
3 Tnext ← the time of receiving the response;
4 creditsall ← the allocated credits of the response;
5 // update the remaining quantity of credits
6 creditsrem+ = creditsall ;
7 if creditsrem ≥ 0 then
8 // the receiver still has spare credits
9 creditsall = creditsrem + f (Tnext ,Tlast);

10 creditsrem− = creditsall ;

11 else if 0 > creditsrem ≥ −OWDbytes then
12 // there is no available credit, but has free

bandwidth for overcommitment
13 creditsall = f (Tnext ,Tlast);
14 creditsrem− = creditsall ;

15 else
16 // stop overcommitting
17 Withholding credits until

creditsrem ≥ −OWDbytes;

18 Tlast = Tnext ;
19 return creditsall .

received at least one GRANT packet, therefore we have∑n
i=1 wi/RTTi

2 > 0.
4) Overcommitment of ProactMP: A receiver of ProactMP

guides active flows to transmit the appropriate amount of data
by allocating credits, and can stop the transmission of a flow
by withholding credits. Suppose we keep all incoming flows
active at all times, just like TCP and most other existing
protocols. In that case, ProactMP is likely to suffer from higher
buffer occupancy, as well as higher latency from the credit
allocation that loops frequently between flows, both of which
contribute to high tail latency.

In some proactive transport designs (e.g., pHost [11]),
each receiver can only allow one active flow at a time. But
simulation results [13] show that the network utilization would
be low under high load if only one active flow is allowed. In
addition, due to the delay of credits transmission, a receiver
is unable to authorize other incoming flows while waiting
for the response from a particular sender. If the sender does
not respond to the authorized credits or does not respond
immediately, the ToR downlink has to remain idle even if it
can be used by other senders.

Therefore, considering the fact that a receiver has no
idea whether one particular sender will respond to credits,
and suffers from low bandwidth utilization due to waiting
for responses from the sender, we use an overcommitment-
based credit allocation method in ProactMP to ensure full
utilization of the ToR downlink, whose pseudo-code is given
by Algorithm 1.

The receiver conducts credit allocation upon receiving a
Response message / DATA packet from any sender. We define

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3925

Fig. 4. Allocations of credits at a receiver with our overcommitment-based
method given by Algorithm 1.

a function f (Tb ,Ta) to calculate the idle credits generated in
the process of waiting for responses. Assume that the receiver
allocates credits at time Ta and Tb respectively, so the idle
credits generated from Ta to Tb can be calculated as:

f (Tb ,Ta) =
min{Tb − Ta ,OWDbase}

OWDbase
·OWDbytes . (3)

The receiver needs to overcommit in moderation, otherwise,
excessive overcommitment will consume too much buffer
space in the ToR and result in congestion. We evaluate the
availability of credits based on both the remaining quantity and
allocated quantity of credits. The availability of credits deter-
mines how many credits a receiver can currently advance to
an incoming active flow. Algorithm 1 specifies three different
credit availability levels:

1© The receiver still has spare credits (line 7∼10). It can
use all of the remaining credits and the idle credits generated
in the process of waiting for responses after the last allocation.

2© There are no spare credits (line 11∼14). At this point,
all the available credits reserved by the receiver have been
allocated, while free bandwidth is still available on the ToR
downlink. Therefore, the idle credits generated in the process
of waiting for responses can still be overcommitted to improve
the utilization of ToR downlink.

3© Overcommitting more credits to senders might result in
queue buildup (line 15∼17). New flows can only be authorized
to send data once any sender successfully responds to the
previously allocated credits.

Theoretically, the overcommitment-based credit allocation
method provided by Algorithm 1 can achieve a maximum of
100% utilization of ToR downlink in each RTT.

Assume that within one one-way delay (OWD), a receiver
allocates credits to multiple senders at time T1, T2, · · · ,
Tm (m ≥ 2) respectively, i.e., T1−Tm < 1·OWD . As shown
in Fig. 4(a), overcommitment is involved in all the allocations
except for time T1. So the allocated credits creditsall and
remaining credits creditsrem at different time points can be
represented as:

T1

{
creditsall = OWDbytes = C1,
creditsrem = 0,

T2

{
creditsall = f (T2,T1) = C2,
creditsrem = −f (T2,T1),

· · ·
Tm

{
creditsall = f (Tm ,Tm−1) = Cm ,
creditsrem = −∑m

i=2 f (Ti ,Ti−1).
(4)

Then the total quantity of credits Ctotal allocated in this
OWD is:

Ctotal =
∑m

i=1
Ci

= OWDbytes +
Tm − T1

OWDbase
·OWDbytes . (5)

So the maximum downlink utilization U we can achieve is:

Umax =

lim
Tm−T1→OWDbase

Ctotal

RTTbytes

=
2 ·OWDbytes

RTTbytes
= 100%, (6)

where RTTbytes is the amount of data that can exactly cover
the RTT between sender and receiver without introducing
additional delays, and there is RTTbytes = 2 · OWDbytes.

Therefore, the downlink utilization approaches 100% as
Tm−T1 approaches OWDbase . Even if certain senders do not
respond to credits, the ToR downlink still remains available
for other senders to use.

Similarly, assume the time interval between T1 and Tm

is greater than one OWD but less than one RTT. As shown
in Fig. 4(b), there is 1 · OWD < T1 − Tm < 1 · RTT .
According to Algorithm 1, the receiver overcommits credits at
time T2, · · · , Tm−1, and Tm to maintain full utilization of
the downlink. So we still have:

Ctotal = C1 +
min{(Tm − T1),OWDbase}

OWDbase
·OWDbytes

= 2 ·OWDbytes = RTTbytes , (7)

and the downlink utilization U is:

U = RTTbytes/RTTbytes = 100%, (8)

In summary, ProactMP with overcommitment can achieve
up to 100% downlink utilization without exceeding the down-
link’s capacity, which is a significant improvement over the
utilization of no overcommitment. And such improvement
brought by overcommitment remains unaffected by the number
of active flows or the timing of receiving responses from
senders. Even in scenarios with only one active ProactMP
connection, overcommitment can still be self-triggered by
multiple subflows contained in this connection.

It is worth mentioning that we use RTT/2 to calculate the
OWD in this paper. In practice, the delay of the forward path
and the delay of the return path are not always equal, which
leads to the inability to accurately estimate the OWD using
RTT/2. But ProactMP’s multipath capabilities and function of
overcommitment protect it from the impact of inaccurate OWD
estimates: Even if the delay of the forward path and the return
path are not equal, ProactMP ultimately ensures the allocation
of 2 · OWDbytes = RTTbytes credits to the sender, thus fully
utilizing the downlink.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3926 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Fig. 5. Topology of our self-constructed testbed for datacenter networks.

5) Loss Recovery of ProactMP: We expect lost packets to
be rare in ProactMP. This is because the two main causes
of packet loss, namely link failure and buffer overflow, are
very uncommon in datacenter networks with ProactMP. Firstly,
modern datacenter networks adopt multiple methods to deal
with network faults, which can almost completely mask the
effect of packet loss caused by link failure or corruption for
transport layer protocols [29]. Secondly, ProactMP adopts a
proactive control method to reduce buffer usage and effectively
avoid buffer overflows. Therefore, we optimize lost-packet
handling in ProactMP to improve its efficiency in common
cases of no packet loss.

ProactMP delegates the task of detecting and notifying lost
packets to the receiver. ProactMP does not use any explicit
acknowledgment for lost packets, but uses a timer-based
mechanism to detect lost packets periodically. According to
the offset and length in each received DATA packet, the current
range of received bytes and missing bytes can be obtained
from the list. If the receiver does not receive any packet of a
message within a certain period of time (Tout , set to several
RTTs), it will send a RESEND packet to the sender, which
contains the first range of missing bytes in the list. And the
sender will retransmit the specified bytes.

The loss recovery of ProactMP also addresses the loss
of GRANT packets. When a GRANT packet is lost during
transmission, the sender will not send any data due to lack of
credits, resulting in the receiver receiving no additional packet
of this message and continuing waiting. When the waiting time
exceeds Tout , it triggers ProactMP’s loss recovery and sends
a RESEND packet to the sender. The sender can continue to
transmit data after receiving the RESEND packet.

We also simplify the response of ProactMP congestion
control to packet loss. ProactMP congestion control has no
need to identify the occurrence of packet loss or give feedback
to lost packets; consequently, packet loss does not affect credit
allocation at the receiver and the sender.

IV. PERFORMANCE EVALUATION

We implement ProactMP as a module in the Linux system,
and deploy it in our testbed for datacenters. The ProactMP
implementation utilizes the RPC framework provided by
Dubbo [30] and uses the key networking features in the Linux
kernel (e.g., TCP/IP).

A. Test Setup

The topology of our testbed is depicted in Fig. 5. Our
testbed adopts the classic Clos [7] (e.g., Fat-Tree [15]) DCN

topology, which can implement scenarios such as single-path
transmission, multipath transmission, shared bottleneck and
numerous traffic concurrency. We add ProactMP traffic and the
traffic of contrastive schemes in the left half of Fig. 5, and add
background traffic in the right half. We have 3 server hosts (S1,
S2, S3) connected to 2 client hosts (C1, C2) through a core
switch using 6Gbps links. Each host is a GIGABYTE GB-
BSi7HA-6500 machine, with 2.5GHz 64-bit 2-Core Intel Core
i7-6500U processor, 4GT/s, 4MB cache, 32GB 2133MT/s
DDR4 RAM, and a Intel i219LM 1GbE NIC. The base RTT
of our testbed is 2µs, which the minimum RTT between two
hosts (e.g., S1 and C1) passing through a core switch. So
in the ProactMP implementation for 1Gbps ToR downlink
bandwidth, OWDbytes is set to 125B.

Various transport protocols and congestion control algo-
rithms are deployed in the hosts. We choose TCP variants
(DCTCP [6], Cubic [31], Vegas [32], BBR [33]), MPTCP
variants (Olia [34], Balia [35], wVegas [36]) and a proactive
transport protocol (Homa [19]) as the contrastive schemes.
All the above schemes have Linux implementations, and are
deployed in each host. All the hosts are running on Linux
ubuntu 18.04 OS with kernel version 4.19.234 [37]. The path
manager of MPTCP is set to “ndiffports”, and the scheduler
is set to “min-RTT”, the detailed description of configuring
MPTCP can be seen in [38].

B. Transmission Performance for Different Flow Sizes

DCN is filled with flows of various sizes. We analyze five
workloads, including the Web search workload for DCTCP
analysis [6] (W1), the workload of the Google search appli-
cation (W2), the aggregate workload of all applications in a
Google datacenter (W3) from literature [13], the workload on
a collection of memcached servers at Facebook [39] (W4), and
the workload on the Hadoop cluster at Facebook [40] (W5).
Large flows dominate W1, flows larger than 1MB account
for 30% and the maximum size reaches more than 50MB.
In W2, W3, and W5, flows with sizes ranging from 100B
to 1KB account for about 60%, while 10% of the flows in
W5 are larger than 100KB. In W4, nearly 40% of the flows
are smaller than 10B, and more than 95% are smaller than
1KB. Therefore, we choose flows with sizes of 20B, 200B,
1KB, 50KB, 500KB, 10MB, 50MB, and 500MB to verify
the performance of different schemes when transmitting small
flows and large flows. With no background traffic, we have C1
request a flow of a given size from S1, which then transmits
the flow separately with the support of different schemes. All
of the multipath schemes utilize two subflows, which pass
through spine switches CORES1 and CORES2, respectively,
while the single-path schemes only use one path that passes
through CORES1. The distribution of flow completion times
(FCTs) is shown in Fig. 6, which is the time duration from
the request being sent to the message being completed. We
can see that ProactMP has the lowest or close to the lowest
FCT no matter transmitting what size of flows, its FCT is
also more stable than the other schemes and rarely experiences
large fluctuations.

When the flow size is 20B, the FCTs of ProactMP and
Homa have similar distribution patterns, and this is because

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3927

Fig. 6. Distribution of FCTs for flows of different sizes.

they both adopt burst strategy in the first RTT, and 20B size
of data is enough to be transmitted within OWDbytes in the
first RTT. As the flow size increases to 200B, ProactMP and
Homa need more than one RTT to complete the transmission.
Although ProactMP has a lower bound of FCT similar to
Homa, it can generally guarantee a lower and more stable
FCT than Homa. Compared with TCP variants and MPTCP
variants, ProactMP significantly improves the FCT of small
flows because its bursting in the pre-grant phase can make
good use of the idle bandwidth in the first RTT.

When transmitting large flows, the contrast between the
FCTs of Homa and ProactMP becomes more pronounced.
As the flow size increases to more than 500KB, Homa’s
performance gradually approaches that of TCP variants, and
does not demonstrate obvious superiority in transmitting large
flows larger than 10MB, while ProactMP achieves shorter
FCTs. The different overcommitment methods adopted by
Homa and ProactMP lead to their performance gap in practical
use. Specifically, Homa deploys a priority-based overcommit-
ment mechanism that overcommits at most one flow for each
available priority level. This means that Homa’s overcommit-
ment does not take effect when there is only one Homa flow in
the network or all flows are given the same priority. Therefore,
Homa does not achieve notable performance when there is no
competition. Instead, ProactMP’s overcommitment mechanism
calculates its credits based on the current available capacity,
which is free from the restriction of the number of priorities
or flows, thus achieving higher bandwidth utilization and
shorter FCTs in non-competitive situations. MPTCP variants
are limited by the design concept of ensuring fairness [41],
which makes them obtain similar FCTs to TCP variants despite
utilizing multiple subflows, and inferior to DCTCP and BBR
in some cases.

Overall, compared with TCP variants, ProactMP improves
the efficiency in completing small flows by 133%∼135%
and large flows by 17%∼175%. And compared with MPTCP
variants, ProactMP improves the efficiency in completing
small flows by 102%∼128% and large flows by 30%∼154%.

Therefore, it is conducive to supporting the transmission of
complex data traffic in DCNs.

C. Bandwidth Utilization and Fairness

Modern datacenters support a wide range of protocols,
making it necessary to consider whether ProactMP can coexist
gracefully with existing protocols. The primary reason existing
protocols are difficult to coexist gracefully and fairly is that
they inevitably interact with each other via queuing in the
network [42]. As TCP is a dominant transport protocol in
production DCNs, we take TCP as an example. TCP variants
include loss-based TCP (e.g., Cubic) and delay-based TCP
(e.g., Vegas). Loss-based TCP adopts an aggressive window
adjustment strategy, which continuously increases its cwnd
until packet loss occurs, so it occupies the queue quickly and
squeezes the throughput of other protocols. Delay-based TCP,
on the other hand, adjusts its cwnd differently. Delay-based
TCP is sensitive to network conditions, once the bottleneck
queue is built and RTT increases accordingly, it decreases
its cwnd. As a result, delay-based TCP has limited compet-
itiveness, and its throughput can be easily exhausted due to
excessive concession.

In order to provide a demonstrable effect for comparison,
we choose an extremely aggressive scheme (Cubic) and an
extremely conservative scheme (Vegas) as the background
traffic, respectively. We use iPerf [43] to generate traffic,
and test the throughput of different protocols at increasingly
higher network loads to measure their ability to utilize network
bandwidth. The results of network sharing between different
protocols and network utilization limits are shown in Fig. 7.
We let a Cubic flow or a Vegas flow go through the same
bottleneck link of 1Gbps with a certain number of competing
flows, and vary the number of competing flows from 1 to 4.
The colored rectangles in each figure represent the percentage
of bandwidth occupied by different flows, while the gray
rectangles represent the percentage of unused bandwidth. To
evaluate the fairness of resource allocation among traffic

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3928 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Fig. 7. Network sharing of single-path schemes and multipath schemes with Cubic and Vegas.

flows, we also calculate the Jain’s fairness index (JFI) [44]
of different cases. The JFI curves along with the number of
competing flows are shown in Fig. 8.

When competing with an aggressive Cubic flow, DCTCP,
Homa, ProactMP and Olia all obtain JFIs close to 1 and
get their fair share of bandwidth while achieving high link
utilization of over 90%. But no protocol achieves 100%
utilization, they all waste network bandwidth to some extent
in certain cases. Homa wastes the most bandwidth when
there is only one competing flow, and its unused bandwidth
gradually increases as the number of flows increases. This
is because Homa uses priority levels for flow control, and
when all of the scheduled priority levels are allocated, senders
will not be able to respond, resulting in the idleness of
the receiver’s downlink. Such waste of bandwidth becomes
increasingly serious as the overall network load increases.
But ProactMP’s overcommitment mechanism overcomes this
problem, and achieves the highest bandwidth utilization while
ensuring fairness. By contrast, as a delay-based MPTCP CC
scheme, wVegas is far less competitive than the others. wVegas
obtains JFIs close to the lower bound, which means the
bandwidth resources are almost monopolized by the Cubic
flow. Even as the number of competing flows increases,
wVegas’s bandwidth share and link utilization still show no
significant improvement.

When competing with a conservative Vegas flow, all proto-
cols show strong aggressiveness. Even wVegas, a delay-based
scheme like Vegas, achieves twice the throughput as Vegas.
As the number of competing flows increases, DCTCP, Homa,
Olia, and wVegas achieve higher network utilization, but
always fail to share bandwidth fairly with Vegas. We can see
from Fig. 7(j) that both Vegas and wVegas have poor capacity
to utilize bandwidth. Even in the case of multiple active flows,
they are still unable to overcommit their ToR downlinks. This
observation also indicates that the improvement in bandwidth

Fig. 8. JFIs of Cubic/Vegas with a certain number of competing flows.

utilization in other test groups has nothing to do with Vegas.
Overall, Vegas’s conservative window adjustment strategy
makes it challenging for ProactMP and other protocols to
share bandwidth with Vegas with perfect fairness. However,
as shown in Fig. 8(b), with the increase of flow number of
ProactMP, ProactMP’s JFI continues to increase to close to 1
and outperforms the fairness provided by delay-based wVegas.
Although the JFI of ProactMP is lower than that of wVegas
when the number of competing flows is less than 3, this is
mainly due to Vegas’s poor capacity to utilize bandwidth.
ProactMP can achieve high bandwidth utilization at the down-
link without compressing Vegas through a reasonable credits
control strategy at the receiver, and gradually achieves a fair
share of the bandwidth with conservative flows.

D. Delay Performance During Incast Conditions

Incast is a common problem in DCNs, which is usually
caused by the many-to-one and many-to-many communication
mode. When a host sends a request to a group of nodes (e.g.,
server cluster or storage cluster), all the nodes in this cluster
will receive the request and respond almost simultaneously. As

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3929

Fig. 9. CDF of RTT of a 10-to-1 incast.

TABLE II
MEAN, MAXIMUM AND TAIL RTT OF EACH PROTOCOL, AND THE

AVERAGE THROUGHPUT OF TEN FLOWS

a result, multiple nodes will send data streams to this host at
the same time, leading to a “micro burst of flows”. The incast
problem will be particularly more apparent when using TCP
in an environment of high bandwidth and low latency [45]. To
study the impact of incast on different protocols, we conduct
10-to-1 incast experiments in our testbed. We set host C2 as
one client node and let it send 10 requests simultaneously to
different servers. Finally, all respond flows will be concen-
trated in the downlink of TORS4, whose bandwidth is 1Gbps.

We count the RTT distribution of 6 different protocols
in 10 seconds during incast, and display the cumulative
distribution function (CDF) of RTT in Fig. 9. Table II shows
the basic performance of 6 protocols, where 100B latency is
measured end-to-end at the application level with 100-byte
requests and responses, 99th-p RTT is the 99th percentile of
RTT. The RTT of ProactMP for short flows (i.e., 100B latency)
is 8% lower than that of Homa, and more than 40% lower
than those of TCP or MPTCP.

We believe that a protocol with longer RTTs has experi-
enced longer queuing delay, and thus has a weaker ability to
handle incast. ProactMP has the shortest mean RTT, about
80% of its RTTs are lower than 33µs, with more than 97% of
its RTTs lower than 100µs, and its proportion of RTTs within
10µs is the highest among all protocols. Olia behaves similarly
to DCTCP. The RTT of delay-based wVegas has the most
centralized distribution pattern. We can see from Fig. 9 that
RTTs within the range of 10∼30µs account for about 50% of
the total. However, as a reactive transport protocol, the window
adjustment strategy of wVegas inevitably has a certain lag
and cannot send the optimal amount of data according to the
usage of ToR downlink. Therefore, wVegas is still impossible
to avoid buffer overflow and timeout caused occasionally
by excessive data transmission, resulting in ultra-long RTTs

Fig. 10. Throughput curves of a Homa flow and two ProactMP subflows
when congestion occurs on CORES1.

accounting for 4.5%. Similar problems are observed in other
reactive protocols driven by the sender, such as Cubic, DCTCP,
and Olia. However, ProactMP reduces the proportion of ultra-
long RTT to about 2.5% and improves tail RTT by 71%∼77%
compared to previous sender-driven protocols. ProactMP also
handles incast better than Homa. It improves tail RTT by 76%
and mean RTT by 53% compared to Homa. Although Homa is
also a receiver-driven protocol like ProactMP, its flow control
strategy based on network priorities is less effective against
incast. This is because when all of the scheduled priority
levels are allocated, the receiver of Homa will be unable to
overcommit even if its downlink has idle bandwidth, while
most senders experience longer latency due to waiting for
responses. Therefore, the performance of Homa tends to be
inferior to Cubic overall.

E. Load Balancing and Congestion Migration

ProactMP aims to provide better transmission performance
for proactive transport protocols by utilizing multipath capabil-
ities. To verify ProactMP’s ability to balance load and migrate
congestion, we change the load on a spine block to simulate
non-congestion and congestion scenarios, and compare the
performance of proactive transport with and without multipath
capabilities. We maintain a 60-second transmission between
S1 and C1. ProactMP utilizes two subflows, which pass
through spine switches CORES1 and CORES2 respectively.
While Homa, a single-path scheme for comparison, uses
only one path that passes through CORES1. During the
transmission, we add 50% network load on CORES1 within
15s ∼ 45s and then remove it after 45s, while the load on
CORES2 remains unchanged in 60 seconds; so as to simulate
the scenario where a certain spine block is congested and
becomes the bottleneck that limits the overall link speed. The
throughput curves along with time of one Homa flow and two
ProactMP subflows are depicted in Fig. 10.

When there is no congestion on CORES1 and CORES2,
the spine block is not the bottleneck to limit the link
speed. As shown in Fig. 10, controlled by the receiver (C1),
Homa achieves an average throughput of 0.8387Gbps, while
ProactMP fairly distributes the load between two subflows
and achieves an average total throughput of 0.9235Gbps. Both
Homa and ProactMP achieve high downlink utilization.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3930 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Fig. 11. CDF of FCTs for different schemes under two realistic DCN
workloads.

However, as the load increases and congestion occurs on
CORES1, the throughput of Homa is obviously limited by
the spine switch. Although the downlink of C1 still has a lot
of idle bandwidth, Homa’s average throughput only reaches
0.4265Gbps, and is not recovered until 45s, which means
that congestion on the spine block has become the bottle-
neck limiting Homa’s throughput and downlink utilization.
Unfortunately, Homa uses only one single path and thus cannot
eliminate this bottleneck, resulting in its average throughput
in 60 seconds being reduced to only 0.6326Gbps.

On the contrary, although the throughput of ProactMP on
subflow 1 also decreases with the occurrence of congestion on
CORES1, the sender (S1) of ProactMP can detect the decline
of path quality on subflow 1 by observing the difference
between the RTTs of subflows. It can be seen in Fig. 10(b)
that ProactMP quickly transfers part of the load on subflow 1
to subflow 2 as congestion occurs, and reduces the amount of
data sent on subflow 1 to relieve the congestion on CORES1.
During the congestion on CORES1, ProactMP ensures that
each subflow experiences the same degree of congestion by
balancing load among multiple subflows, thus still achieving
an average total throughput of 0.9134Gbps, which is not
significantly lower than that with no congestion. ProactMP’s
average total throughput in 60 seconds reaches to 0.9185Gbps,
an increase of 45.2% compared to that of Homa, which
means that ProactMP successfully eliminates the bottleneck
generated by spine blocks by utilizing multipath capabilities
and improves the overall performance.

F. Performance Under Realistic DCN Traffics

In this section, we use realistic datacenter network traffics to
verify the performance of ProactMP in practical applications,
and evaluate whether ProactMP’s performance in practical
environments meets the expectations. We adopt two realistic
DCN workloads, W1 [6] and W5 [40]. We randomly inject
traffic into the network based on the flow size and flow
distribution of W1 and W5, respectively, to simulate the
network load of realistic datacenters, and control the total
number of flows in the network to 300. We calculate the
FCTs of ProactMP and two MPTCP variants under different
workloads, the CDF of FCTs for different schemes is shown
in Fig. 11.

As shown in Fig. 11, ProactMP achieves the shortest overall
FCTs under both W1 and W5 workloads. Compared with Olia

and wVegas, it ensures that more small flows are completed
in a shorter time and achieves shorter tail FCT for large flows.
Under workload W1, ProactMP reduces the average FCT by
34.3% compared to Olia and 24.05% compared to wVegas.
Under workload W5, ProactMP reduces the average FCT by
53.74% compared to Olia and 46.94% compared to wVegas.
wVegas cannot guarantee the fast completion of small flows
smaller than 10KB, but its delay-based window adjustment
strategy reduces the buffer occupancy and overflow, thus still
achieving an average FCT of over 12.8% shorter than Olia.
Overall, ProactMP can adapt to the complex and ever-changing
network traffics in practical applications, and provides a better
user experience than typical multipath schemes.

On the whole, compared with other protocols, ProactMP
can ensure a lower queuing delay and a more stable RTT
when incast occurs, and avoid the serious consequences caused
by excessive buffer occupation and overflow. It also ensures
that all participating flows can achieve the highest average
throughput during incast, thus realizing a reasonable balance
between delay and throughput. When the load increases
or congestion occurs on a spine block, ProactMP can still
ensure the connection throughput and improve the overall
performance of the network by achieving load balancing and
congestion migration between multiple subflows. In addition,
ProactMP achieves the lowest average FCT when dealing with
realistic DCN traffics, and ensures that most flows can be
completed with shorter FCTs.

V. CONCLUSION

In this paper, we proposed ProactMP, a proactive multipath
transport protocol for datacenters. ProactMP is designed to be
connectionless, it transmits a certain amount of data blindly
in the first RTT, so as to better support small flows in low-
latency networks and achieve the best delay for small flows
even under high loads. ProactMP deploys a coupled congestion
control mechanism with overcommitment to ensure efficient
and correct data transmission through multiple paths, which
globally adopts a receiver-driven rate control strategy and
locally allocates the transmit quantity of data at the sender.
Therefore, it guarantees that each connection or subflow has
an appropriate number of bytes in flight in the network, and
thus achieves load balance and avoids buffer overflow. We
implemented ProactMP in the Linux system and conducted
a series of experiments in our datacenter testbed to verify
its effectiveness. Experimental results show that ProactMP
achieved better flow completion time, link utilization, fairness
and latency than TCP variants, MPTCP variants, and a leading
proactive transport protocol.

REFERENCES

[1] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” in Proc. 29th
ACM Conf. Spec. Interest Group Data Commun. (SIGCOMM), 2015,
pp. 183–197.

[2] L. Poutievski et al., “Jupiter evolving: Transforming Google’s dat-
acenter network via optical circuit switches and software-defined
networking,” in Proc. 36th Conf. ACM Spec. Interest Group Data
Commun. (SIGCOMM), 2022, pp. 66–85.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

ZHUANG et al.: PROACTMP: A PROACTIVE MULTIPATH TRANSPORT PROTOCOL FOR LOW-LATENCY DATACENTERS 3931

[3] S. Arslan, Y. Li, G. Kumar, and N. Dukkipati, “Bolt: Sub-RTT conges-
tion control for ultra-low latency,” in Proc. 20th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2023, pp. 219–236.

[4] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP Incast throughput collapse in datacenter
networks,” in Proc. 1st ACM Workshop Res. Enterp. Netw. (WREN),
2009, pp. 73–82.

[5] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proc. 31st Conf. ACM Spec. Interest
Group Data Commun. (SIGCOMM), 2017, pp. 239–252.

[6] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. 24th ACM
Conf. Appl., Technol., Archit., Protoc. Comput. Commun. (SIGCOMM),
2010, pp. 63–74.

[7] C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech.
J., vol. 32, no. 2, pp. 406–424, Mar. 1953.

[8] M. A. Qureshi et al., “PLB: Congestion signals are simple and effective
for network load balancing,” in Proc. 36th Conf. ACM Spec. Interest
Group Data Commun. (SIGCOMM), 2022, pp. 207–218.

[9] Y. Li et al., “HPCC: High precision congestion control,” in Proc. 33rd
ACM Conf. Spec. Interest Group Data Commun. (SIGCOMM). ACM,
2019, pp. 44–58.

[10] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in Proc. 19th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2022, pp. 51–70.

[11] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2015, pp. 1–12.

[12] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” in Proc. 31st Conf. ACM Spec.
Interest Group Data Communi. (SIGCOMM), 2017, pp. 29–42.

[13] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa:
A receiver-driven low-latency transport protocol using network priori-
ties,” in Proc. 32nd Conf. ACM Spec. Interest Group Data Commun.
(SIGCOMM), 2018, pp. 221–235.

[14] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch, “TCP
extensions for multipath operation with multiple addresses,” Internet
Eng. Task Force, RFC 6824, 2013, Accessed: May. 2024. [Online].
Available: https://www.ietf.org/rfc/rfc6824.txt

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. 22nd ACM Conf. Appl., Technol.,
Archit., Protoc. Comput. Commun. (SIGCOMM), 2008, pp. 63–74.

[16] A. G. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. 23rd ACM Conf. Appl., Technol., Archit., Protoc.
Comput. Commun. (SIGCOMM), 2009, pp. 51–62.

[17] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. 23rd ACM Conf.
Appl., Technol., Archit., Protoc. Comput. Commun. (SIGCOMM), 2009,
pp. 63–74.

[18] D. Li and J. Wu, “On the design and analysis of data center network
architectures for interconnecting dual-port servers,” in Proc. 33rd IEEE
Conf. Comput. Commun. (INFOCOM), 2014, pp. 1851–1859.

[19] J. K. Ousterhout, “A Linux kernel implementation of the Homa transport
protocol,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2021, pp. 99–115.

[20] A. M. Abdelmoniem and B. Bensaou, “T-RACKs: A faster recovery
mechanism for TCP in data Center networks,” IEEE/ACM Trans. Netw.,
vol. 29, no. 3, pp. 1074–1087, Jun. 2021.

[21] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. 25th ACM Conf. Appl., Technol., Archit.,
Protoc. Comput. Commun. (SIGCOMM), 2011, pp. 266–277.

[22] R. Mittal et al., “TIMELY: RTT-based congestion control for the data-
center,” in Proc. 29th ACM Conf. Spec. Interest Group Data Commun.
(SIGCOMM), 2015, pp. 537–550.

[23] Y. Zhu et al., “Congestion control for large-scale RDMA deploy-
ments,” in Proc. 29th ACM Conf. Spec. Interest Group Data Commun.
(SIGCOMM), 2015, pp. 523–536.

[24] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc. 28th
Conf. ACM Spec. Interest Group Data Commun. (SIGCOMM), 2014,
pp. 307–318.

[25] K. Liu et al., “Hostping: Diagnosing intra-host network bottlenecks
in RDMA servers,” in Proc. 20th USENIX Symp. Netw. Syst. Des.
Implement. (NSDI), 2023, pp. 15–29.

[26] I. Cho, A. Saeed, S. J. Park, M. Alizadeh, and A. Belay, “Protego:
Overload control for applications with unpredictable lock con-
tention,” in Proc. 20th USENIX Symp. Netw. Syst. Des. Implement.
(NSDI), 2023, pp. 725–738.

[27] S. Hu et al., “Aeolus: A building block for proactive transport in data-
centers,” in Proc. Annu. Conf. ACM Spec. Interest Group Data Commun.
Appl., Technol., Archit., Protoc. Comput. Commun. (SIGCOMM), 2020,
pp. 422–434.

[28] J. Ousterhout. “The Homa transport protocol—Confluence.” 2023.
[Online]. Available: https://homa-transport.atlassian.net/wiki/spaces/
HOMA/overview

[29] T. Qu, R. Joshi, M. C. Chan, B. Leong, D. Guo, and Z. Liu, “SQR:
In-network packet loss recovery from link failures for highly reliable
Datacenter networks,” in Proc. 27th IEEE Int. Conf. Netw. Protoc.
(ICNP), 2019, pp. 1–12.

[30] “Apache Dubbo—Building enterprise microservices with Dubbo!”
Accessed: May. 2024. [Online]. Available: https://dubbo.apache.org/en

[31] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[32] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in Proc. ACM Conf.
Commun. Archit., Protoc. Appl. (SIGCOMM), 1994, pp. 24–35.

[33] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 20–53, 2016.

[34] R. Khalili, N. Gast, and M. Popovic, “Opportunistic linked-increases
congestion control algorithm for MPTCP,” Internet Eng. Task Force,
draft-khalili-mptcp-congestion-control-05, 2013, Accessed: May. 2024.
[Online]. Available: https://www.ietf.org/archive/id/draft-khalili-mptcp-
congestion-control-05.txt

[35] A. Walid, Q. Peng, J. Hwang, and S. Low, “Balanced linked adaptation
congestion control algorithm for MPTCP,” Internet Eng. Task Force,
draft-walid-mptcp-congestion-control-04, 2016, Accessed: May. 2024.
[Online]. Available: https://www.ietf.org/archive/id/draft-walid-mptcp-
congestion-control-04.txt

[36] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. 20th IEEE Int. Conf. Netw. Protoc. (ICNP), 2012,
pp. 1–10.

[37] “Multipath TCP in the Linux kernel.” Accessed: May. 2024. [Online].
Available: https://www.multipath-tcp.org,

[38] “Configure MPTCP with several tunables.” Accessed: May. 2024.
[Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/
ConfigureMPTCP.

[39] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. 12th ACM
SIGMETRICS Perform. Joint Int. Conf. Meas. Model. Comput. Syst.
(SIGMETRICS), 2012, pp. 53–64.

[40] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. 29th ACM Conf. Spec.
Interest Group Data Commun. (SIGCOMM), 2015, pp. 123–137.

[41] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion
control for multipath transport protocols,” Internet Eng. Task
Force, RFC 6356, 2013, Accessed: May 2024. [Online]. Available:
https://www.ietf.org/rfc/rfc6356.txt

[42] V. Olteanu et al., “An edge-queued datagram service for all datacenter
traffic,” in Proc. 19th USENIX Symp. Netw. Syst. Des. Implement.
(NSDI), 2022, pp. 761–777.

[43] J. Dugan, S. Elliott, B. A. Mah, and J. Poskanzer, “iPerf—The ultimate
speed test tool for TCP, UDP and SCTP.” Accessed: May. 2024. [Online].
Available: https://iperf.fr/

[44] R. Jain, “The art of computer systems performance analysis:
Techniques for experimental design, measurement, simulation and
modelling,” SIGMETRICS Perform. Eval. Rev., vol. 19, no. 2, pp. 5–11,
1991.

[45] G. Kumar et al., “Swift: Delay is simple and effective for congestion
control in the datacenter,” in Proc. Conf. ACM Spec. Interest Group Data
Commun. (SIGCOMM), 2020, pp. 514–528.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

3932 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Rui Zhuang (Graduate Student Member, IEEE)
received the B.S. degree from the Department
of Information Engineering, Hefei University of
Technology in July 2019. She is currently pursu-
ing the Ph.D. degree with the School of Cyber
Science and Technology, University of Science
and Technology of China. Her research interests
include future Internet architecture design, transmis-
sion optimization, and data center network.

Jiangping Han (Member, IEEE) received the bach-
elor’s and Ph.D. degrees from the Department of
Electronic Engineering and Information Science,
University of Science and Technology of China, in
2016 and 2021, respectively, where she is currently
a Postdoctoral Fellow with the School of Cyber
Science and Technology. From November 2019 to
October 2021, she was a Visiting Scholar with the
School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University. Her
research interests include future Internet architecture

design and transmission optimization.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, and the Ph.D. degree from
the Department of Electronic Engineering and
Information Science, University of Science and
Technology of China, in 2003 and 2007, respec-
tively, where he is a Professor with the School of
Cyber Science and Technology. From May 2012
to May 2013, he was a Postdoctoral Researcher
with the Department of Electrical and Computer
Engineering, University of Florida. His research

interests include next-generation Internet architecture design, transmission
optimization, and network security. He serves as an Editorial Board for
several journals, including the IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING, the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, and the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT. He has also served as a Lead Guest Editor for
many reputed journals/magazines, including IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, IEEE COMMUNICATIONS MAGAZINE, and
IEEE NETWORK. He is an IET Fellow.

Jian Li (Senior Member, IEEE) received the bach-
elor’s degree from the Department of Electronics
and Information Engineering, Anhui University in
2015 and the doctor’s degree from the Department
of Electronic Engineering and Information Science,
University of Science and Technology of China
(USTC) in 2020. From November 2019 to November
2020, he was a Visiting Scholar with the Department
of Electronic and Computer Engineering, University
of Florida. From December 2020 to December 2022,
he was a Postdoctoral Researcher with the School

of Cyber Science and Technology, USTC, where he is currently an Associate
Researcher. His research interests include quantum networking, wireless
networks, and next-generation Internet architecture. He serves as an Editor
for China Communications.

Qibin Sun (Fellow, IEEE) received the Ph.D. degree
from the Department of Electronic Engineering
and Information Science, University of Science and
Technology of China in 1997, where he is currently
a Professor with the School of Cyber Security. From
1996 to 2007, he was with the Institute for Infocomm
Research, Singapore, where he was responsible for
industrial as well as academic research projects in
the area of media security, and image and video
analysis. He was the Head of Delegates of ISO/IEC
SC29 WG1(JPEG), Singapore. He worked with

Columbia University from 2000 to 2001 as a Research Scientist. He led the
effort to successfully bring the robust image authentication technology into
ISO JPEG2000 standard Part 8 (Security). He has published more than 120
papers in international journals and conferences. His research interests include
multimedia security, and network intelligence and security.

Jun Lu received the bachelor’s degree from
Southeast University in 1985 and the master’s degree
from the Department of Electronic Engineering
and Information Science, University of Science and
Technology of China, in 1988, where he is currently
a Professor with the School of Cyber Science and
Technology. His research interests include theoret-
ical research and system development in the field
of integrated electronic information systems. He
is an Academician of the Chinese Academy of
Engineering.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 04,2024 at 07:35:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

