
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 4, DECEMBER 2023 4313

DECC: Achieving Low Latency in Data Center
Networks With Deep Reinforcement Learning

Yi Liu , Jiangping Han , Member, IEEE, Kaiping Xue , Senior Member, IEEE, Jian Li , Member, IEEE,
Qibin Sun, Fellow, IEEE, and Jun Lu

Abstract—Data Center Networks (DCNs) suffer from synchro-
nized bursts for network topology and parallel applications,
leading to buffer overflows at switches and increasing network
delay. To overcome this problem, some congestion control algo-
rithms like DCTCP use Explicit Congestion Notification (ECN)
to notify in-network congestion and reduce switch buffer occu-
pancy. However, the traditional Additive Increase Multiplicative
Decrease (AIMD) method causes high fluctuation of round-trip
time (RTT) in DCNs. Some intelligent congestion control algo-
rithms designed for Internet can achieve great flexibility, but
are not applicable in DCNs for a lack of accurate congestion
feedback. In this paper, we analyze the deficiencies of utiliz-
ing RTT as congestion signals and the applicability of learning
algorithms in DCNs. Then, we propose DECC, a smart TCP
congestion control algorithm for DCNs, which combines Deep
Reinforcement Learning (DRL) with ECN to achieve high band-
width utilization as well as low queuing delay. DECC fully utilizes
precise in-network feedback and formulates several QoS require-
ments to a multi-objective function. Meanwhile, it decouples cwnd
adjustment with DRL decision making to gradually learn the
optimal congestion control policy in real-time. We evaluate the
performance of DECC in various scenarios. Simulation results
show that DECC can reduce the queue length at bottleneck
switches by more than 50% compared to DCTCP, while main-
taining high bandwidth utilization and reducing Flow Completion
Time (FCTs) under burst traffic.

Index Terms—Data center networks, TCP incast, deep rein-
forcement learning, congestion control.

I. INTRODUCTION

W ITH the rapid development of network applications,
data centers have been established and flourished to

meet strict requirements for computation and storage [1]. In
large data centers, there are numerous servers interconnected
by switches to carry complex and demanding applications,
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forming data center networks (DCNs). Complex application
traffic and special topology cause many characteristics in
DCNs different from traditional networks:

• Highly synchronized bursts. The request of one target host
may be divided into multiple small tasks, such as super
computing, Web search or distributed file requests, which
need to be completed by several other servers. After fin-
ishing the task, they respond sub results to the target node
almost at the same time, resulting in highly synchronized
bursts. These synchronized bursts exceed the egress port
capacity of switches, causing queue to build up and may
lead to congestive packet drops [2].

• High-bandwidth links and shallow-buffer switches. he
link bandwidth grows rapidly to achieve the high-speed
transmission of throughput-sensitive flows in DCNs. By
contrast, the buffer in commodity switches expands
slowly for fast processing, not compatible with the growth
of per port bandwidth [3].

High-speed links, shallow buffers, and high bursts make
special demands and challenges to DCNs. High-speed links
bring extremely low link delay, hence the queuing delay at
the switches accounts for a large proportion of the total delay
and influences the real Round Trip Time (RTT) significantly.
The data transmission in DCNs is queuing delay sensitive,
which makes the switch buffer occupancy a crucial factor.
However, the micro-burst causes a persistent queue backlog
in the switch when multiple concurrent flows send their pack-
ets to the same output port. The small buffer size cannot carry
the packet occupancy. As a consequence, lots of packets are
dropped due to the buffer overflow. This phenomenon is called
TCP incast [4], [5]. In severe cases, a whole window of packets
will be dropped continuously, unable to trigger fast retransmis-
sion and recovery, resulting in TCP timeout and large Flow
Completion Time (FCT).

To reduce the queuing delay and solve the incast problem,
congestion control algorithms must limit the queue length
and buffer occupancy of switches. However, the state-of-art
algorithms react slowly to in-network congestion and are not
sensitive to buffer occupancy. To overcome this issue, some
congestion control algorithms [6], [7], [8] are proposed to
utilize Explicit Congestion Notification (ECN) mechanism
to perceive in-network congestion at end hosts, so as to
reduce the congestion window (cwnd) in advance. However,
some defects make them insufficient to meet the growing
requirements of applications in DCNs: 1) Traditional Additive
Increase Multiplicative Decrease (AIMD) rule converges
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slowly, leading to bandwidth waste; 2) Traditional algorithms
bring high and unstable buffer occupancy at switches, vul-
nerable to frequent bursts; 3) The rigid cwnd adjustment
strategy cannot adapt to fast changing and uncertain traffic
patterns. To improve adaptability, another class of learning-
based congestion control algorithms [9], [10], [11], [12], [13],
[14], [15] have been proposed successively. Unfortunately, all
these learning-based solutions are designed to adjust sending
rates at end hosts passively, or independently consider the in-
network optimization. Moreover, they only depends RTT to
roughly describe the network congestion state.

Motivated by the above observations, in this paper, we pro-
vide a DRL-based ECN-assisted congestion control algorithm,
named DECC, to combine the explicit congestion degree
feedback at the bottleneck with proactively learning-based
congestion control decisions at end hosts. DECC adopts a
new and efficient objective function including ECN marking
probability, to obtain an optimal window adjustment strategy
and proactively handle the congestion, meanwhile eliminat-
ing the complex modification on switches. DECC further
decouples the cwnd adjustment with DRL decision making.
It learns the cwnd adjustment parameter within a fine-grained
action space through the DRL agent, achieving precise con-
gestion control with high effectiveness in DCNs. Moreover,
for high learning efficiency as well as great adaptability, the
agents first learn a universal cwnd adjusting strategy offline,
then interact with the realistic network and train the network
with online learning, which is detailed in Section IV. DECC
is verified to decrease the buffer occupancy at any bottle-
neck switch, achieving low queuing delay and high burst
tolerance.

Our contributions are summarized as follows:
• We design a novel congestion control algorithm for

DCNs, named DECC, to combine the explicit conges-
tion degree information with proactively learning-based
congestion control decisions at end hosts. DECC reveals
the deficiencies of RTT measurement and takes several
QoS requirements into the learning goal, thus obtaining
the optimal congestion control strategy.

• DECC forms the objective function into a direct reward
function and decouples cwnd adjustment with DRL deci-
sion making. While taking advantage of the intelligence
and adaptability of DRL, DECC learns the fine-grained
cwnd adjustment parameter to achieve high effectiveness
in DCNs.

• We evaluate DECC with large-scale simulations in several
network topologies and traffic patterns. The results show
that DECC can shorten the queue length at bottleneck
switches by more than 50% compared with traditional
schemes. Even under serious bursts, DECC can decrease
FCTs and reduce timeouts of all flows, providing high
burst tolerance.

The rest of the paper is structured as follows. Section II
briefly survey the background and related works. Section III
explains the motivation of our work with a simulation result.
The proposed DECC is designed in details in Section IV.
Thereafter, the performance evaluation and analysis are shown
in Section V, and conclusions are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

DCNs carry large-scale applications and services with
diverse traffic patterns. Most of the traffic in DCNs is
generated by the communication between internal servers
while few traffic comes from clients in public networks [1].
Meanwhile, the links in DCNs have high bandwidth and low
propagation latency. This traffic pattern results in very short
RTT and sensitivity to queuing delay. Traditional TCP is ini-
tially designed for the public network transmission which uti-
lizes packet loss to inform the senders of congestion and tends
to deplete the switch buffer in exchange for higher network
throughput. Therefore, it is unreliable to directly apply TCP to
DCNs for better transmission performance. Considering dif-
ferent mechanisms, previous works of congestion control in
DCNs can be divided into following categories.

Traditional end-to-end congestion control: e.g., DCTCP,
D2TCP [8], L2DCT [7]. DCTCP is one of the most com-
monly used end-to-end transmission protocols in DCNs, which
enables ECN to estimate congestion probability and reduces
cwnd in advance. The cwnd is adjusted by: cwnd = cwnd ·
(1− α

2 ), where α refers to the ratio of total number of marked
packets in a transmission window size, that is the frequency
of packets being marked. After DCTCP, some improved algo-
rithms for specific scenarios and requirements have been
proposed successively. For example, D2TCP defines a deadline
urgency e (the ratio of expected completion time to remaining
deadline) for flows with specified deadlines, then cwnd is cut
by αe

2 to reduce the deadline missing rate of flows; L2DCT
allocates a weight function f inversely related to the data trans-
mission volume for each flow, and cuts cwnd by αf

2 . Besides,
there are many congestion control algorithms based on switch
scheduling [16], [17], [18] or driven by receivers [19], [20],
[21], [22], [23].

Congestion control based on special network interface
cards (NIC): e.g., DCQCN [24], HPCC [25], TIMELY [26],
Swift [27]. DCQCN works like DCTCP depending on ECN
to modulate sending rates in Remote Direct Memory Access
(RDMA) transfers. TIMELY uses specialized NIC to measure
RTT in DCNs with enough precision and utilizes the rate of
RTT variation to predict in-network congestion. HPCC uti-
lizes the in-network telemetry (INT) to obtain detailed switch
and link information. Swift uses precise RTT measurements
to adjust cwnd in packets with an AIMD algorithm, aiming to
maintain the delay around a target delay. Swift decomposes the
end-to-end RTT into NIC-to-NIC and endpoint delay compo-
nents to respond separately to the congestion in fabric versus at
hosts or NICs. These algorithms generally require high switch
or NIC configuration and computing power to break through
traditional performance bottlenecks, and general commercial
switches cannot meet the demand.

Intelligent congestion control: Learning algorithms are
widely applied in the network [28], [29], [30]. QTCP [9] algo-
rithm applies Q-learning to TCP cwnd adjustment, aiming to
make full use of bandwidth and adapt to the network environ-
ment. Nie etc. [10] use RL techniques to dynamically adjust
initial windows of TCP and select appropriate congestion con-
trol schemes, but it is not suitable in DCNs as transmission
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Fig. 1. The work process of ECN.

protocols in DCNs are fixed and controllable, not as complex
and diverse as protocols in public networks. The above shows
some applications of RL algorithms in traditional networks.
For DCNs, AuTO [11] is proposed to shorten the comple-
tion time of short flows by learning the thresholds of each
priority, and achieve high throughput of long flows by learn-
ing sending rates with DRL. To optimize the performance of
ECN in large-scale RDMA networks, ACC [12] is designed
to deploy a distributed DRL agent in each switch to tune
the ECN thresholds independently. Moreover, Remy [13] and
Indigo [14] learn to adjust the rate from pre-collected sampling
network traffic. Aurora [15] uses DRL technique to update
sending rate.

To express the congestion degree more precisely and con-
trol it more promptly, ECN is a standard mechanism described
in RFC 3168 [31] for network devices to notify congestion
at network bottlenecks, without resorting to packet drops.
It utilizes ECN Capable Transport (ECT) and Congestion
Experienced (CE) in IP header, Congestion Window Reduced
(CWR) and ECN Echo (ECE) in TCP header to convey con-
trol signals [32]. The working process of ECN is showed in
Fig. 1. At switches, if the queue length exceeds a threshold
K, the exceeding packets will be marked through the CE code
point in IP header. The threshold K > RTT×C

7 , where RTT
is the round-trip time and C is the packet sending rate. When
the receiver receives a marked data packet, the related ACK’s
ECE code point at TCP header will be marked and the ACK is
sent without delay, but immediately after detecting the mark.
Therefore, ECN can notify senders of the current congestion
probability (queue occupancy) after the queue length exceeds
the threshold.

III. MOTIVATION

Traditional algorithms represented by DCTCP cannot adapt
to the changeable network environment for the rigid cwnd
adjustment and long convergence time. And long flows occu-
pies the buffer, resulting in packet loss of short flows,
especially in current high-speed shallow-buffer data centers.
QTCP first breaks the rules of traditional congestion control
algorithms and applies RL to TCP congestion control in pub-
lic networks, which integrate reinforcement-based Q-learning
framework with TCP design. Unfortunately, we find that in
DCNs, QTCP performs even worse than DCTCP in some
scenarios, like burst with background flows.

QTCP designed for Internet is not suitable for DCN scenar-
ios: We illustrate this problem with a small ns-3 simulation
experiment. As Fig. 2 shows, we connect 44 hosts to one

Fig. 2. The simulation topology.

TABLE I
THE QUERY DELAY COMPARISON

shared-memory switch with 4MB buffer and 1Gbps links. 11
of these hosts form a 10-1 incast pattern, with 10 servers
synchronously sending data to the remaining client. The client
requests 1MB data from servers for query, so each server need
to send 100KB to the client almost synchronously. The query
is finished until all ten flows are completed. Hence the query
delay refers to the maximum completion time of all flows
generated by the request. The client has requested 1000 times
according to Poisson arrival. Setting DCTCP as a benchmark,
we compare and analyze the query delay using QTCP with
and without background traffic. To generate the background
traffic, we make the remaining 33 servers to keep sending
data in the network. Specifically, each host randomly selects
other two hosts to send data, totally forming 66 long-lived
flows as background traffic to occupy the shared buffer of the
switch.

We repeat experiments and attain the average query delay
with two algorithms showed in TABLE I. Without background
traffic, there are only 10 synchronous short flows sharing 4MB
buffer size. The minimum request time is around 8ms, and
QTCP performs well in this scenario with no timeouts, as
well as DCTCP. However, after we start background traffic
to increase buffer pressure, QTCP flows suffer from serious
timeouts and the request takes more than 40ms to complete,
while DCTCP flows are not affected much. QTCP is designed
for long-RTT public networks and utilizes RTT to perceive
congestion, with generally 0.23 seconds decision time interval
while RTT in DCNs is in microseconds. QTCP flows are not
sensitive to the congestion caused by the queue building up at
switches in very short time and cannot respond quickly. Hence
with background traffic, long-lived flows deplete the shared
buffer space, which leaves less headroom to absorb incast
bursts. Therefore, the variation of RTT in DCNs is not enough
to describe the congestion degree, we need more accurate and
timely congestion feedback.
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Accurate congestion perception is required: In congestion
control algorithms, round-trip delay is an inaccurate conges-
tion feedback especially in multi-hop networks. The total
round-trip delay of a packet in the network can be expressed as

dtotal = dnode + dprop + dqueue , (1)

where dnode is the processing delay (including end nodes
and switches), dprop is the propagation delay, and dqueue is
the queuing delay at switches. In high-speed DCNs, dprop
is much smaller than dqueue . In multi-bottleneck networks,
dqueue includes the delay at several bottleneck switches,

dqueue = dq1 + dq2 + · · ·+ dqn , (2)

where dqn is the queue delay at the bottleneck switch n.
Suppose dprop and dnode are unchanged, we have

Δdtotal = Δdq1 +Δdq2 + · · ·+Δdqn . (3)

Suppose the application service causes that the congestion
of bottleneck1 is relieved and the congestion of bottleneck2
increases, finally dtotal remain unchanged. Hence the sender
perceives that the network congestion state is unchanged, but
actually the overall congestion intensifies. The above argument
demonstrates that RTT cannot accurately describe the degree
of in-network congestion. The buffer occupancy at bottleneck
switches is more accurate than the variation of RTT, which
can be estimated by ECN.

Therefore, to break the limitations of traditional algorithms
and make the new intelligent congestion control algorithm
suitable for DCNs, we propose an ECN-assisted DRL-based
congestion control algorithm, and design the algorithm com-
position according to the characteristics of DCNs, dedicated to
reducing the queue length at switches and efficiently handling
synchronized bursts meanwhile obtaining high bandwidth
utilization.

IV. DESIGN OF DECC

In this section, we discuss the application of Deep Q-
learning Network (DQN) [33] and introduce our algorithm
DECC, including the design, description and theoretical anal-
ysis of state, action, objective function, reward mechanism
and training algorithm, to describe the working process of the
proposed system.

A. Problem Formulation

We formulate the congestion control in DCNs as a RL
problem based on Markov Decision Process (MDP). MDP is
a cyclic process in which an agent takes an action to interact
with the environment, moving to the next state and obtaining
rewards. Mathematically, a MDP M = <S, A, R, P> is defined
as follows:

• State space S: finite states which are sufficient to repre-
sent environment conditions.

• Action space A: a collection of limited actions that an
agent can take to interact with the environment.

• Reward R(s, a): the reward attained after taking action
a ∈ A at state s. It depends on the objective function
which is composed of optimization goals. If the objective

Fig. 3. DECC framework.

increases, the action taken is worth encouraging and gets
positive rewards to increase the probability of being taken
next time, otherwise gets negative rewards to reduce it.

• Probability P(st+1|st , a): the probability of choosing
action a ∈ A at state st and move to state st+1, where t
is the decision time.

Let π denote a policy to select actions based on an given
state s: a = π(s). The goal of RL is to learn an optimal
policy π∗ for selecting an action in a given state and maximize
discounted accumulated rewards (γ denotes the discounting
factor):

π∗ = argmaxπE
π

( ∞∑
t=0

γtrt

)
. (4)

This problem is equivalent to finding the maximum state-
action value:

Q∗(s, a) = max
π

Eπ

[ ∞∑
t=0

γtrt+1|st = s, at = a

]
, (5)

which refers to the value of taking action a at state s and
decision time t.

To guarantee the congestion control in DCNs a MDP, we
define:

• State space S: cwnd size, round trip delay, throughput,
switch buffer occupancy, and the length of the current
flow.

• Action space A: sending window adjustment strategy.
Hence the next state of the network only depends on the cur-
rent state and decisions, which satisfies the Markov property:

P(st+1|st , at , st−1, at−1, . . . , s0, a0) = P(st+1|st , at ). (6)

Next, we introduce the design of DECC framework.

B. DECC Framework

The cwnd adjustment strategy in congestion control is actu-
ally a MDP. The network performance is directly transformed
into an evaluation index, finally the optimal policy will be
obtained through interacting with the DCN and learning.
The overall framework of DECC is shown in Fig. 3. There
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is a DRL agent working at, which collects network state
information by interacting with the DCN environment, and
caches it in the sender buffer. The DRL module takes out the
latest data from the buffer every time interval to learn and
adjust parameters, then outputs the current optimal window
adjustment action, which is stored in the buffer and read by
the sender to adjust cwnd.

1) States: State space consists of five observations from
the DCN measured in a time interval, finally defined as
s = {s1, s2, s3, s4, s5}, where s1 represents the average cwnd
size, s2 represents the average RTT, s3 represents the average
throughput, which is calculated by dividing the sent bytes by
the time interval, s4 represents the average switch buffer occu-
pancy, which is calculated by the percentage of ECN marked
packets, and s5 represents the current flow length (the remain-
ing data waiting to be sent of a flow). As the states is observed
every time interval (several RTTs), s1, s2, s3 and s4 are aver-
age values calculated in the time interval. s5 is the current
flow length at the beginning of the time interval. To calculate
s5, the total flow size is aware to the sender while generat-
ing applications. Then, s5 is calculated by subtracting the sent
bytes from the overall flow length.

Cwnd size and round trip delay can describe the transmis-
sion rate at the sender, and the throughput reflects the overall
performance of the network. In general network, these three
factors can fully describe a network’s condition. However,
there are much burst traffic in DCNs, hence we add the
switch buffer occupancy to describe the congestion degree
of current network. When the switch queue length exceeds
a given threshold, the CE Code Points of packets exceeding
will be marked, then the receiver marks the ACK corre-
sponding to these packets with ECN. The sender counts the
number of marked ACKs in one sending window to estimate
the congestion degree of the network (switch buffer occu-
pancy). The current flow length is also considered as our
algorithm needs to treat long and short flows differently. In
the same network state, it should converge to different window
adjustment strategies for long and short flows.

2) Action: DECC aims to find the optimal window adjust-
ment strategy, so the action space is designed as increasing
cwnd, reducing cwnd or maintaining the original size. When
designing the action space of DECC, we adopted finer granu-
larity, which is compared to QTCP and most common learning
algorithms in the public network. The action space is defined
as 14 optional values so as to adjust the window accurately
and find the optimal adjusting scheme:

cwnd = cwnd +
x

cwnd
, (7)

where x ∈ [−3, 10] & x ∈ Z. More optional actions are
provided for agents to make congestion control more flexi-
ble. The asymmetric interval is designed according to facts
that the sender needs to increase the sending window in a
larger-scale so as to detect the available bandwidth, espe-
cially at the early stage of sending packets, and reduce the
window by a small margin to avoid congestion through its
prediction. We define the interval boundary to -3 and 10 for
some observations in experiments, that actions beyond this

range will not improve the performance, but lead to greater
storage spaces and longer convergence time. The value of
x is updated every time interval and take effect in the next
interval, while the cwnd is adjusted every ACK according to
Eq. (7).

3) Reward Function: Reward function design mainly con-
siders the optimization goal and the ability to judge whether
the action is worth rewarding. In general, DECC’s optimization
goal is to achieve the maximum throughput, the minimum
delay. In addition, to reduce the queuing delay and overflow,
buffer occupancy at the bottleneck switches is expected to be
the lowest. Hence we add an important optimization goal,
congestion probability (buffer occupancy) attained by ECN.
Finally the objective function is designed as:

U = log

(
Tp

B

)
− σ1 log d + σ2 log(1− F ), (8)

where Tp is the current throughput, B is the bottleneck
bandwidth (for a real DCN, the bottleneck bandwidth can
be detected in advance), d is the network delay defined as
d = RTT − RTTmin , and F ∈ [0, 1] refers to the propor-
tion of ECN marked packets received in a cwnd. The log
function ensures that the network can converge to a pro-
portional fairness allocation of bandwidth resources when
multiple users compete for the same bottleneck link. When
no congestion occurs, the switch has no or slight queuing
and the packet marking probability F = 0, so the function is
revised to maximizing log(1−F ). σ1 and σ2 represent weights
of each objective in the multi-objective function, which are
tunable. When σ1 and σ2 are adjusted to adapt to service
requirements, the model needs no retrain but only requires
a period of time to converge to the new strategy. Note that
when there is no congestion, the parameter F makes no dif-
ference as no ECN marks are detected, hence throughput
and delay are predominant to control the learning direction,
which ensures that the flow can occupy the bandwidth to
the greatest extent; When ECN marks are detected, F begins
to affect the utility, and the sender adjusts cwnd in advance
to restrict queues at switches. Therefore, the objective func-
tion makes DECC have better capability to deal with burst
traffics.

U is the true objective that DECC attempts to optimize, but
it cannot be set as the reward function directly. Reward func-
tion indicates the effectiveness of the action, as the agent tends
to choose the action with the largest cumulative reward. If
the action taken is worth advocating, it gets a positive reward
to increase the probability of being taken next time, other-
wise gets a negative value as punishment to avoid being taken
next time. However, if the agent chooses a wrong action, the
value of U calculated by the sender in a short time may still
be positive, which means that this action will be advocated.
Then, U can not be used as the reward function since the
network may be trained to an unsatisfactory direction. To cor-
rectly demonstrate the effectiveness of the action, DECC uses
the difference of U to define the reward, as an increase of the
objective function value definitely indicates an improvement
and the corresponding action should be encouraged, regardless
of the original value of U.
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Hence reward function r is given as:

r =

⎧⎨
⎩

a ΔU > εr ,
0 −εr ≤ ΔU ≤ εr ,
b ΔU < −εr ,

(9)

where ΔU refers to the difference of the objective function
values, a is a positive constant meaning encouragement, b is a
negative constant meaning punishment, and εr is the objective
function error. εr can be adjusted in implementation to con-
trol systematic errors and computing errors. Specific values
of these parameters are tunable in the experiments to achieve
better performance.

4) Training Algorithm: For efficient generalization and
prediction ability, we use DQN as the training algorithm. DQN
is a combination of deep learning and Q-learning, which turns
the Q table into a Deep Neural Network (DNN). DQN consists
of two networks, the main network and target network. The
input of the main network is the state st at time step t, and
the output is the value Q(st , at ; θ) of each action at taken in
state st with parameter θ.

At time step t (tinterval is the time interval of each step),
the agent decides an action through ε−Greedy algorithm, the
network will enter next state st+1, then reward rt is fed back to
the agent according to the difference of the objective function
value. For every tinterval , it obtains a tuple (st , at , rt , st+1)
and cache the tuple in the replay memory D for experience
replay. Then, the training approach sample a random minibatch
of {(sj , aj , rj , sj+1)} from D, and calculate the loss function.
The loss function of main network is defined as:

L(θ) = E
[(
yj −Q

(
sj , aj ; θ

))2]
,

yj = r + γmax
a ′ Q

(
sj+1, a

′; θ′
)
, (10)

where θ and θ′ respectively refer to parameters of the main
network and target network. L(θ) indicates the difference
between the theoretical maximum reward and the actual
reward of action at in state st . The learning goal is to minimize
the difference.

The main network is updated every tinterval . To train the
target network, supervised learning can be used to update the
parameters until the network converges. Training data sets are
randomly sampled from the experience pool to reduce correla-
tion between samples, making the network easier to be trained.
The target network is trained and updated in periodic intervals
with tuples copied from the experience pool. More details are
given in Algorithm 1.

Combination of online training and offline training: DECC
first trains the DQN offline to make the parameters converge by
simulating the real DCN scenarios, until the parameters con-
verge (to a pre-trained model). After convergence, it applies
the pre-trained model as the initial model for tests and experi-
ments, and starts online training. The sender will train its local
parameters online by using the realistic traffic to fit the actual
flow size distribution, bandwidth and other changing factors.
Online training is used to improve the model generalization
and handle new network states.

Algorithm 1 Learning Algorithm of DECC
1: Initialize replay memory D and minibatch size N
2: Initialize state-action value function Q with random θ
3: Initialize target state-action value function Q ′ with θ′ = θ
4: Initialize the time step t ← 1
5: while t ≤ T do
6: The agent takes current network state st from the

shared buffer at sender;
7: Select a random action at with probability ε;
8: Otherwise select at = maxa Q(st , a; θ);
9: Execute action at and transfer to a new state st+1 and

get the reward with variation of throughput, round trip
delay and switch buffer occupancy;

10: Cache the tuple (st , at , rt , st+1) in D;
11: Sample random minibatch of (sj , aj , rj , sj+1) from D;
12: Compute the target Q value:

yj = rj + γmax
a ′ Q ′(sj+1, a

′; θ′);

13: Compute the loss function:

L(θ) = E
[
(yj −Q(sj , aj ; θ))

2
]
;

14: Update the parameters θ with a gradient descent:

�θL(θ) = E
[
(yj −Q(sj , aj ; θ))�θ Q(aj , aj ; θ)

]
;

15: Replace the target network parameters θ′ with the main
network parameters θ every periodic intervals;

16: t = t + 1;
17: end while

V. PERFORMANCE EVALUATION

We implemented DECC in ns-3 [34] and evaluated its
performance in DCNs. Our experiments are committed to
highlighting that DECC can efficiently learn the optimal cwnd
adjustment strategy, obtain low network delay by reducing the
queue length at switches and high bandwidth utilization, better
at handling burst traffic.

As most of congestion control algorithms in DCNs are based
on ECN and AIMD rules, we select DCTCP as the base-
line algorithm. Besides, to highlight the good performance of
DECC, We add swift and QTCP as other two comparison
algorithms in our experiments:

• DCTCP: the most commonly used congestion control
algorithm based on ECN feedback in DCNs.

• Swift: Swift uses an end-to-end RTT measurements with
special NIC timestamps to modulate a congestion win-
dow in packets, aiming at maintaining the delay around
a target value.

• DECC: the AIMD algorithm we designed combining
DRL and accurate feedback from intermediate nodes.

• QTCP: a smart algorithm designed for traditional
networks under dynamic network bandwidth, based on
TCP and the generalization-based Kanerva coding.

Our experiments are divided into three parts. First, we
evaluate the throughput, network delay, switch queue length
and convergence time with four algorithms under different
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TABLE II
DRL ALGORITHM PARAMETERS SETTING

TABLE III
NETWORK PARAMETERS SETTING

topologies and network bottlenecks. Second, we verify
DECC’s performance under incast traffic through variable
numbers of synchronous flows. Finally, we evaluate the burst
tolerance of DECC with distributed queries.

DRL algorithm parameters setting: TABLE II shows
detailed parameter values of the DRL algorithm in simulation
experiments. The reward is updated in every timeinterval and
can be adjusted to get accurate measurements and appropriate
convex condition. ε in ε − Greedy algorithm is initialized as
1.0, discounted by 0.999 per time step and no less than 0.01.
This parameters vary in different topologies and are detailed
in specific experiments.

A. Performance

1) Single-Hop Network Scenario: we use machines con-
nected to one switch with 1Gbps links as Fig. 2 shows without
background traffic. One host is a receiver; the others are
senders. The senders establish long-lived connections to the
receiver and send data as fast as they can. We repeat the
experiment for DCTCP, swift, DECC and QTCP.

Simulation parameters: The available bandwidth of the
network simulated by ns-3 is 1Gbps; the bottleneck bandwidth
is 50Mbps; and the baseRTT (RTT without the queuing delay)
is set to 3μs and 1ms respectively. During the transmission, we
sample the instantaneous queue length at switch ports every
100ms. Parameters are summarized in TABLE III.

Considering one single flow: Fig. 4 shows the performance
of DECC online. Fig. 4(c) and Fig. 4(d) show the real-time
tracking of the queue length at switches. Setting baseRTT as
1ms, the queue length of DCTCP flows fluctuates around 6

Fig. 4. Comparison of RTT and queue length under a single-hop network.

Fig. 5. Throughput comparisons under a single-hop network.

packets, showing that there are slight queuing on the switch,
but no congestion. Similarly, the same experiments are carried
out when baseRTT is 1ms, DCTCP flows have a short queue
accumulation, reaching about 30 packets, resulting in short-
term congestion, but quickly adjust and get out of congestion
according to ECN feedback. Meanwhile, DECC can achieve
zero queue length at the switch as well as swift and QTCP.
Fig. 4(a) and Fig. 4(b) shows the variation of network delay
with sending packets. The results show that DECC achieves
the lowest network delay.

Obviously the switch queue with DECC does not exceeds
the threshold and no ECN marks are detected, so the algo-
rithm depends on the variation of throughput and delays to
learn optimal cwnd adjusting policy. Fig. 5 shows the overall
throughput measured after the network parameters basically
converge. When the bottleneck bandwidth is 50Mbps, DECC
achieves more than 49Mbps, highest in four algorithms. In
general, DECC achieves higher bandwidth occupation and
lower network delay.

Considering multiple flows: There are five senders and one
receiver, and five TCP flows compete for 50Mbps bottleneck
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Fig. 6. Comparison of real-time RTT with multiple flows (baseRTT = 1ms).

Fig. 7. Comparison of real-time queue length with multiple flows
(baseRTT = 1ms).

Fig. 8. Comparison of real-time RTT with multiple flows (baseRTT = 3 µs).

bandwidth. Fig. 7 shows the switch queue length, it can be
seen that when five flows compete for the same bottleneck
bandwidth, the four algorithms all suffer from the conges-
tion. The DCTCP flows queue seriously at the switch, with
the queue length fluctuating between 20 and 40 packets, and
there are always marked packets in a cwnd. Swift adjusts the
window according to the change of RTT, resulting in unstable
queue length and large fluctuation.

Due to the lack of accurate congestion feedback, QTCP also
has large queue fluctuations and has been in a congested con-
dition. However, DECC controls the queue length to be less
than 20 packets. Once the queue length exceeds 17 packets
there will be marked packets by ECN. As can be seen from
the result, DECC can quickly react when the ECN mark is
generated, to make the queue length fall below 17 in a short
time. Fig. 6 shows the same flow’s RTT variation in 2 seconds.
DECC achieves the lowest round-trip latency and highest sta-
bility due to well-limited switch queues. Fig. 8 and Fig. 9 are
delay and queue length variation while baseRTT is setting as
3 µs. DECC still performs the best, and as the shorter RTT
brings faster information updates, DECC can limit the queue

TABLE IV
COMPARISON OF THE FAIRNESS AND BANDWIDTH

Fig. 9. Comparison of real-time queue length with multiple flows
(baseRTT = 3 µs).

Fig. 10. Comparison of average throughput of five flows with different
algorithms.

to a lower value, while the queue of swift flows still fluctuates
greatly, frequently overflowing and packet loss, which result
in timeouts and large delay fluctuations.

Fairness: Fig. 10 shows comparisons of respective through-
put of five flows with the four schemes, and TABLE IV lists
the concrete fairness and bandwidth occupancy. The fairness
is calculated by Jain’s fairness [35]. From TABLE IV, even
if five flows compete for the bottleneck, DECC has higher
bandwidth utilization close to the full bandwidth and shows
great fairness, no less than DCTCP, while swift is very terrible.
Hence DECC has good inter-flow fairness.

Learning curve and convergence time: Fig. 11 shows the
learning curves of offline training. The throughput is low
before convergence and fluctuates greatly. With training and
learning, parameters gradually converge and the throughput
tends to be stable and close to full bandwidth. As DECC flows
make decisions to select an optimal action and update the
reward to optimize DQN parameters every tinterval , tinterval
significantly influences the convergence time as well as learn-
ing efficiency. To explore the sensitivity of DECC to decision
time interval and determine an efficient value of tinterval
in experiments, we respectively set tinterval as 0.01s, 0.05s
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Fig. 11. Learning curves with different decision time intervals.

and 0.1s to observe their learning curves. In addition, we set
the RTT as 1ms in single-hop networks. Intuitively, with the
decision interval increasing, the convergence becomes slower.
When tinterval is set as 0.01s (10 RTTs), the throughput con-
verges around 10s but fluctuates violently around 48Mbps.
When tinterval is set as 0.1s, the agent achieves high and
steady throughput though needs around 35s to converge.
Shorter time intervals and more frequent decision making
allow agents to observe more information and learn faster, but
also more sensitive to the variation of network states, leading
to fluctuation.

DECC performs better when the interval is 0.05s, which can
achieve relatively fast convergence time as well as stability.

Complexity and deployability: DECC compresses the num-
ber of states and actions of utilizing the average values of
measurements (cwnd, throughput, delay, ECN and remaining
flow size) to make decision in each time interval, instead of
keeping all the measurements during the time. And DECC con-
servatively adopts a three-layer fully connected neural network
for training, with 5 input nodes for states, 14 output nodes for
actions and tunable node number for the hidden layer, which
is easy to converge. Such design reduces the storage space and
computational complexity of DECC, meanwhile ensuring the
effectiveness of learning [28]. Moreover, we set tinterval as
0.01s, whose resource consumption is acceptable for servers
in DCNs which consists of multiple CPUs and high-bandwidth
bus [12]. In addition, DECC is trained with online as well as
offline training. DECC first learns from the historical data of
the DCN offline to make the model converge at some general
network scenarios, then adjusts the model online in the real
network, which greatly improves the online training efficiency
and reduce the convergence time.

2) Multi-Hop network Scenario: Fig. 12 shows the multi-
bottleneck network topology in the experiment. There are a
total of 40 flows competing for a 10Gbps bottleneck and 30
flows competing for a 1Gbps bottleneck.

Simulation parameters: available bandwidth of the DCN
is 1Gbps. The bottleneck bandwidth T1-T2 is 10Gbps and
T2-R1 is 1Gbps. The initial window is set as 10 data seg-
ments and each data segment is 1448bytes. Middle switches
are configured with ECN. Switch T1’s queue threshold is set

Fig. 12. A multi-hop network topology in the experiment.

TABLE V
COMPARISON OF THE AVERAGE FLOW THROUGHPUT OF THREE PATHS

AND BOTTLENECK BANDWIDTH

Fig. 13. Queue length of t1.

to 20-60 data packets and T2’s queue threshold is set to 50-150
data packets. The RTT is set to 10μs .

In this scenario, link T1-T2 and T2-R1 are two bottleneck
links, so there are queues built up on switch T1 and T2.
TABLE V shows comparisons of the average flow through-
put of three paths S1-R1, S2-R2 and S3-R1. It can be seen
that with DECC the average throughput under the three paths
is higher. Moreover, according to TABLE V, with DCTCP,
the total bandwidth of bottleneck T1-T2 is 9.5296Gbps and
T2-R1 is 0.9532Gbps while with DECC, the total bandwidth
of bottleneck T1-T2 is 9.7217Gbps and T2-R1 is 0.9922Gbps.
Hence, bandwidth occupancy of DECC is higher than DCTCP.
Fig. 13 and Fig. 14 show comparisons of the queue length at
switches T1 and T2 with four congestion control algorithms
tested during 1s after convergence.

The queue length of DECC is much shorter than DCTCP,
almost cut by 70% and even more, which significantly reduces
the queuing delay and relieves the switch pressure in faced
with burst traffic. At switch T1, DECC limits the queue length
below the minimum threshold of ECN, and can quickly restore
queues after a slight congestion occurs, making queues shorter
and shorter by learning from the network information. The
queue with DCTCP always exceeds the maximum threshold of
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Fig. 14. Queue length of t2.

ECN, which makes the network congested all the time, and the
queue length fluctuates greatly. Swift and QTCP flows are also
slightly congested, and have high queue occupancy. Moreover,
at switch T2, the queue length of DECC becomes close to zero
with time while DCTCP’s queue fluctuates greatly in a high
value. Since DECC is designed to minimize buffer occupancy,
the queue of DECC becomes shorter with the agent learning.

It can be seen that in the complex multi-bottleneck network,
especially when the number of concurrent flows is large,
DECC has more obvious advantages, which can significantly
reduce the switch buffer occupancy while maintaining high
bandwidth.

B. Solving the Incast Issue

We compare the ability of DECC and the other three algo-
rithms in dealing with the incast problem in the scenario with
burst synchronous flows.

We implement an experiment to repeat the network condi-
tions in [6]. Many-one machines are connected to a switch
with 1Gbps links. One machine acts as a client, others act as
servers. The client requests (“queries”) 1MB/N bytes from N
different servers, and each server responds immediately with
the requested amount of data. The client waits until it receives
all the responses, and then issues another similar query, repeat-
edly. We set the baseRTT as 10ms. In our experiments, the
minimum query completion time is around 8ms. The incom-
ing link at the receiver is the bottleneck, and it takes 8ms to
deliver 1MB of data over a 1Gbps link. We carry out experi-
ments for DCTCP, swift, QTCP and DECC. Fig. 15 shows the
average query delay. When the number of synchronous flows
is no more than 25, all algorithms perform well with around
10ms query delay. But when the number increases, DCTCP
suffers from the incast problem and the query delay is largely
extended. When there are 50 synchronous flows, the query
delay with DCTCP even reaches more than 150ms, which is
deadly in high-speed DCNs. QTCP and swift flows also per-
form poorly as the number of simultaneous flows increases.
DECC has always controlled the query delay to around 10ms
as the incast degree increases.

Fig. 16 shows the fraction of queries that suffered at least
one timeout. When the number of servers gradually increases
(to about 30), DCTCP begins to suffer timeouts slightly. When
the number of servers reaches 35 or 40, DCTCP suffers more
serious timeouts, while the performance of DECC always
remains good. It can be seen DECC handles synchronous short

Fig. 15. Query delay comparison.

Fig. 16. Timeout fraction comparison.

flows well after convergence, and can avoid packet loss by
limiting buffer occupancy, thereby avoiding request timeouts.

C. Burst Tolerance

Modern DCNs carry many types of services, with long
and short flows mixed. There are many background flows,
so switch buffers may be occupied at all times, which make
higher demands for the burst tolerance of congestion control
algorithms. In previous experiments, we confirmed that the
queue length of DECC is shorter than that of DCTCP when
sending data packets continuously. If the burst traffic arrives
when the switch is highly occupied, the available space of the
switch will be too small to avoid the overflow. Theoretically, it
shows that DECC has better burst tolerance than the traditional
algorithm by limiting queue length. Also, DECC has more
advantages than QTCP with accurate congestion feedback.

To evaluate this, we connected 59 hosts to a switch with
1Gbps links. 26 of these hosts participate in a 25 − 1 incast
pattern, with 1 host acting as a client, and 25 hosts acting as
servers. The client requested a total of 1MB data from the
servers (40KB from each). In Fig. 12, the switch can easily
handle 25:1 incast with DCTCP and DECC, without induc-
ing any timeouts. Next, like the simulation in the motivation,
we use the remaining 33 hosts to start “background” traffic
of long-lived flows to consume the shared buffer. All back-
ground flows also use the corresponding congestion control
algorithms. TABLE VI shows the query delay.

We see that without background traffic, DCTCP, QTCP and
swift all achieve query delay not exceeding 10ms. Judging
from the performance of swift in the previous experiment,
swift has violent queue length fluctuations, which will lead
to the timeout of data packets in a short period of time and
extends query delay. But in presence of long-lived flows that
occupy the buffer as the background traffic, DCTCP flows are
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TABLE VI
THE COMPARISON OF THE QUERY DELAY

subjected to timeouts and QTCP flows perform even worse,
while DECC’s performance is almost unchanged.

If there is no background flows, the buffer is empty and
has high burst tolerance. When there are background flows,
the buffer is already occupied by long and stable background
flows, which may easily cause sudden short flows losing pack-
ets, as they cannot compete with long flows for the buffer.
When there is a burst of traffic, the DECC flow makes an accu-
rate and optimal response to the network congestion, quickly
limits the queue length, which reduce the packet loss rate of
short flows and make the query delay reasonable.

VI. CONCLUSION

In this paper, we proposed a DRL-based ECN-combined
congestion control algorithm DECC for DCNs, to precisely
perceive the congestion degree at the bottleneck link, and
learn cwnd adjusting strategies proactively. We designed the
objective function with ECN to reduce the queue length at
bottleneck switches, and took a fine-grained action space to
improve the throughput. Through simulation experiments, it is
confirmed that DECC achieves higher bandwidth occupancy,
lower queuing delay, and lower query delay under burst syn-
chronous traffic. Accurate buffer occupancy information at
bottleneck switches and appropriate DRL algorithm design are
efficient for the congestion control in DCNs.
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