
A Fog-Aided Privacy-Preserving Truth Discovery
Framework over Crowdsensed Data Streams

Shaoxian Yuan, Bin Zhu, Feng Liu, Jian Li, Kaiping Xue†
School of Cyber Security, University of Science and Technology of China, Hefei, Anhui 230027, China

†Corresponding author, kpxue@ustc.edu.cn

Abstract—With the proliferation of mobile and wearable
devices, mobile crowdsensing (MCS) is becoming a new paradigm
for data collection and analysis. To effectively identify truthful
information from crowdsensed data without privacy leakage,
privacy-preserving truth discovery (PPTD) has gained much
attention recently. Existing works either didn’t consider real-
time applications over data streams or failed to achieve enough
efficiency for a large group of workers. In this paper, we
propose FPTD, a Fog-aided Privacy-preserving Truth Discovery
framework which is secure and efficient in handling real-
time applications with a large group of workers. To reduce
overhead, we adopt cloud-fog computing architecture to divide
the complete worker group into many smaller ones. Then we
design a unique secure aggregation protocol SecAgg which can
securely and efficiently aggregate inputs from workers in smaller
groups. Finally, we give detailed construction of FPTD, an
efficient truth discovery framework based on SecAgg for real-
time applications. Through extensive experiments and security
analysis, we demonstrate that both SecAgg and FPTD are secure
and efficient.

Index Terms—fog computing, privacy-preserving truth discov-
ery, mobile crowdsensing

I. INTRODUCTION

With the rapid advancement and adoption of mobile,
wearable and IoT devices, mobile crowdsensing (MCS) is
becoming a new paradigm for data collection and analysis.
Due to its low deployment cost, wide geographic coverage
and flexibility, MCS has enabled a broad range of real-time
applications, such as real-time traffic monitoring [1], urban
dynamic mining [2]. In practice, data collected from mobile
workers are noisy and unreliable due to background noise and
manufacturing quality. In order to identify truthful information
from noisy data, many truth discovery algorithms have
been proposed [3], [4]. Despite the effectiveness, applying
truth discovery to mine truthful information needs to tackle
the privacy challenge. In many crowdsensing applications,
data records provided by workers may contain sensitive
information.

To tackle the privacy challenge, several privacy-preserving
truth discovery (PPTD) schemes [5]–[8] have been proposed.
Generally, they require workers to submit encrypted or masked
data records to cloud servers and then perform truth discovery
algorithm on encrypted or masked data. However, all these
schemes incur limitations in handling real-time applications.

In particular, we address three challenges when designing
an efficient PPTD scheme for real-time applications. First, data
are collected as streams rather than static datasets in real-

time applications. This means that each worker senses and
uploads data records at regular intervals. On the one hand,
this challenge requires a streaming truth discovery algorithm
underlying PPTD scheme. On the other hand, it requires that
the PPTD scheme should be able to report an estimation at
regular intervals. Second, workers in real-time applications
are dynamic. Workers in real-time applications may drop out
at any time due to various reasons such as disconnection of
network, unexpected termination of mobile device ,etc. This
challenge requires the PPTD scheme to be failure robust, i.e.,
output correct estimation even if some workers drop out. Third,
the number of workers may vary in scale. For large-scale real-
time applications like dynamic mining, any mobile user could
be a worker to contribute his/her social recording to earn some
profits. This requires that PPTD scheme should be efficient
even if the number of workers grows dramatically.

Roughly speaking, the majority of existing works [5]–[7]
only focus on static data. Other work such as [8] is able to
overcome the first two challenges while overlooking the third
one, resulting in inefficiency with respect to a large group of
workers. To be specific, the inefficiency of [8] is caused by the
underlying secure aggregation protocol, called double masking
[9]. For a large group of workers, double masking requires
each worker to maintain a connection with every other worker
to ensure privacy preservation. However, we argue that each
worker maintaining connections with a much smaller group is
enough to ensure privacy.

In particular, our contributions can be summarized below:

• First, we turn to cloud-fog computing architecture to
divide the complete worker group into many smaller
ones. In this way, we require each worker maintain
connections with only its neighbours in the same group.
This significantly reduces the number of connections each
worker has to maintain.

• Second, we design a novel failure-robust secure aggrega-
tion protocol SecAgg which can securely aggregate inputs
from all small worker groups efficiently.

• Finally, we give a detailed construction of FPTD
framework based on SecAgg for real-time applications
in MCS. Moreover, through extensive experiments and
security analysis, we demonstrate that our FPTD is secure
and efficient for real-time applications in MCS.

The remainder of this paper is organized as follows. In
section II, we review existing works of PPTD. The system

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

GL
O

BE
CO

M
 2

02
1

- 2
02

1
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
10

4-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
46

51
0.

20
21

.9
68

58
17

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

model and threat assumption are given in section III. In section
IV, we describe the underlying truth discovery algorithm and
cryptographic primitives we adopt. In section V, we introduce
the proposed scheme in detail. In section VI, we give security
proof. Afterwards, performance evaluation is given in section
VII. Finally, we conclude our paper in section VIII.

II. RELATED WORK

The majority of existing works [5]–[7] focus on PPTD over
static data. The first work of PPTD was presented by [5],
which adopted threshold Paillier cryptosystem under a single
cloud server. However, [5] introduced heavy computation
burdens over both workers and cloud server. To optimize the
performance, [6] utilized an improved Paillier cryptosystem
and super-increasing sequence under the cloud-fog computing
architecture. [7] realized a PPTD with an incentive mechanism
to resist potential lazy workers by reducing the reward a lazy
worker can obtain. However, existing PPTD work on static
data cannot naturally extend to real-time applications due to
the heavy cryptographic tools they adopt.

To address real-time applications, [8] adopted a lightweight
secure aggregation protocol to realize PPTD which can support
worker’s dropout. Besides, [8] exploited a steaming truth
discovery to efficiently identify truths from data streams.
These two unique designs helps [8] overcome the first two
challenges while overlooking the third one. Though some more
lightweight aggregation protocol [10] based on differential
privacy can help overcome the third challenge, the security
would be degraded.

III. PROBLEM STATEMENT

A. System Model

Our system is a cloud-fog computing architecture. It consists
of three entities: cloud server, fog nodes and workers. The
cloud server is a remote server provided by a cloud service
provider. Fog nodes are at the edge of network and close
to workers. Workers can be devices with different sensors,
such as smart phones, wearable and IoT devices. Cloud server
maintains a connection with fog nodes and each fog node
manages a group of workers. Fog nodes relay the messages
between any two workers or workers and the cloud server.
Formally, we assume there are M objects to be sensed M =
{o1, · · · , oM} and K fog nodes F = {f1, · · · , fK}. Each
fog node fu manages nu workers Su = {s1, s2, · · · , snu}.
In each time slot t, each worker collects data record xti =
{xm,ti }Mm=1, updates distance dti and weight wti . Estimated
truth is represented as x∗t = {x∗m,t}Mm=1.

B. Threat Model

Similar to other PPTD works, we consider a semi-honest
adversary where both fog nodes and cloud server faithfully
behave as the protocol requires, while they try to infer private
information from transcripts in the meantime. We also assume
workers are honest because they are stimulated by incentives
[11] which is another important topic in MCS.

In this paper, we build the security of SecAgg on the
common assumption that no fog nodes will collude with the
cloud server.

C. Design Goals

Our design goals are three folds.
Failure-robustness. The proposed FPTD framework should

output correct estimation based on the remaining workers’
sensory data even if some workers may drop out unexpectedly
like [8].

Efficiency. The proposed FPTD should reach significantly
lower overheads for both workers and cloud server compared
with [8].

Security. We require the proposed FPTD can securely
perform the process of truth discovery to identify truths from
workers’ noisy sensory data without revealing any data and
weights.

IV. PRELIMINARIES

In this section, we will illustrate the underlying truth
discovery algorithm and cryptographic primitives.

A. Truth Discovery

The underlying truth discovery algorithm we adopt is the
incremental CRH (iCRH) [3]. The basic idea behind iCRH is
to assign a weight to each worker to measure reliability and
aggregate weighted average to obtain estimated truth.

The iCRH handles data streams. In each time slot t, iCRH
is divided into three steps: truth update, distance update and
weight update.

• Truth update: In this step, given each worker’s sensory
data xti and weight wt−1i of last time slot, estimation of
truth is updated as a weighted average

x∗t =
∑S
i=1 w

t−1
i × xti∑S

i=1 w
t−1
i

. (1)

• Distance update: In this step, each worker updates their
incremental distances dti as below, given estimated truth,
sensory data and previous distance dt−1i

dti = α× dt−1i + d(xti, x
∗
t), (2)

where distance function d(x, y) measures the deviation
level of two sensory data records of dimension M . For
continuous data, we have d(x, y) =

∑M
m=1(x

m,t
i −ym,ti)2

and for categorial data, d(x, y) =
∑M
m=1 1(xm,ti , ym,ti)

where 1(x, y) = 1 if x 6= y and 0 otherwise. Besides, α
represents decay rate to allow more recent data to play
more important role.

• Weight update: In this step, given each worker’s distance,
each worker’s weight is updated as

wti = log(
S∑
i=1

dti)− log(dti). (3)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

B. Key Agreement

The key agreement establishes secrets between workers.
It consists of three algorithms: KA.param,KA.gen and
KA.agree.
• KA.param(1λ) 7→ (G, g, p): Taking security parameter
λ as input, the algorithm outputs public parameters pp.

• KA.gen(pp) 7→ (cPKi , cSKi): Taking the input of pp, the
algorithm returns a public key pair to any worker i.

• KA.agree(cSKi , cPKj) 7→ sci,j : Given the secret key of
si and the public key of sj , the algorithm returns a shared
key.

For correctness, we require that ∀i 6= j,
KA.agree(cSKi , cPKj) = KA.agree(cSKj , cPKi) = scij . For
security, we rely on Decisional Diffle-Hellman assumption
(DDH) [12].

C. Secret Share

We rely on Shamir’s t-out-of-n secret share [13], which
allows someone to split a secret s into n shares, such that any
t shares can be used to reconstruct s, but any set of at most
t− 1 shares gives no information about s.

Specifically, sharing algorithm SS.share(s, t,U) 7→
{(i, si)}i∈U takes as input a secret s, a set U of n workers, and
a threshold t ≤ |U|. For correctness, we require ∀s, t, n with
1 ≤ t ≤ n, ∀|U| = n if SS.share(s, t,U) 7→ {(i, si)}i∈U , for
V ⊆ U and |V| ≥ t, then SS.rec({j, sj}j∈V , t) = s.

V. PROPOSED SCHEME

A. Overview

Double masking is a failure-robust secure aggregation
protocol under the single server model. It employs two layers
of masks to protect workers’ inputs. Generally, the first layer
is a zero-sum mask which can be canceled if no worker drops
out. The second layer is a random mask which can only be
removed by recovering the seeds. To handle workers’ dropouts,
double masking exploits t-out-of-n Shamir’s secret sharing to
distribute the secrets among all workers, which can help the
central server to recover the two masks. Trivially applying
double masking within each small group poses privacy breach
since trivial solution not only outputs the final sum of inputs
from all workers but also reveals partial sums of each group,
which leaks extra information to a potential adversary.

We transform double masking to SecAgg via a re-mask
technique. Our idea consists of two steps. First, similar to the
trivial solution, we require each worker to add two layers of
masks. However, we let each fog node remove the zero-sum
mask and leave the random mask to the cloud server. Besides,
we require each fog node adds one layer of the zero-sum mask
to the intermediate value to preserve privacy against the cloud
server.

After transforming double masking to SecAgg, we construct
the secure truth update and secure weight update for FPTD.
Our construction is quite simple and straight. We utilize
SecAgg to aggregate weights and weighted truths to update
truths according to equation 1. Similarly, we aggregate

distance information from all workers to update weights
according to equation 3.

B. SecAgg
We observe that even though workers are dynamic and may

drop out at any time, fog nodes are relatively stable and
can maintain a long-term connection with the cloud server.
Therefore we can avoid secret sharing among fog nodes which
saves computation and communication.

Assume n =
∑U
u=1 nu represents the number of all workers

and worker’s id i ∈ [n]. Let S, si and fu represent the cloud
server, the u-th fog node and worker i respectively. Then we
define G(i, j) = 1 if si and sj are in same Su managed by
fu, 0 otherwise. In particular, ∀ i ∈ [n], G(i, S) = 1 holds. To
support worker’s dropout, the threshold for each small group
is defined tu = d 34nue. We also assume each worker holds a
vector xi of dimension M ′.

Round 0: One Time Initialization. In this round, SecAgg
establishes long-term keys between workers and the cloud
server. First, S generates public parameters pp which is a
cyclic group G with prime order p and generator g via

KA.param(1λ) 7→ (G, p, g).

Then S publishes pp to all fog nodes and workers. After
obtaining pp, each si including S generates a key pair

KA.gen(pp) 7→ (cPKi , cSKi),

where i ∈ [n]∪ {S}. After key generation, each si exchanges
(i, cPKi) with every other sj if G(i, j) = 1. Besides, S
exchanges (S, cPKS) with every si. After the exchange, each
si establishes key

ski,j = KA.agree(cSKi , cPKj),

where j ∈ [n]∪S/{i} and G(i, j) = 1. Likewise, S establishes
keys ski,S ∀ i ∈ [n]. These keys serve as the keys for
symmetric Authenticated Encryption, i.e. AE.

Round 1: Establish Zero-Sum Seeds. After one time
initialization, both workers and fog nodes need to establish
shared seed to generating zero-sum masks. Specifically, each
si and fu generates new key pairs

KA.gen(pp) 7→ (sPKi , sSKi),

KA.gen(pp) 7→ (zPKu , zSKu),

where i, j ∈ [n] and u, v ∈ [K]. Then each si exchanges
(i, sPKi) with every sj where G(i, j) = 1 and each fog node
exchanges (u, zPKu) with every fv . Afterwards, each si and
fu establishes shared secrets

si,j = KA.agree(sSKi , sPKj),

zu,v = KA.agree(zSKu , zPKv),

respectively.

Round 2: Share Secrets. In this round, each si shares his/her
random seed and secret key within his/her group. Besides,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

each fog node fu shares his/her secret key with all other fog
nodes. First, each si first uniformly samples random seed ri
for random masks. Then each si divides sSKi , ri into shares
via

SS.share(sSKi , tu) 7→ {(j, sSKi,j)}j∈Su/{i},
SS.share(ri, tu) 7→ {(j, ri,j)}j∈Su/{i},

where G(i, j) = 1. After dividing shares, each si encrypts the
shares

ei,j = AE.encrypt(ski,j , i||j||sSKi,j ||ri,j),

then each si exchanges ei,j with sj where j ∈ [n] and
G(i, j) = 1.

Round 3: Masked Input Collection. In this round, each si
generates random mask bi and zero-sum mask si,j . For each
m ∈ [M ′], si computes each element

bmi =H(ri||m) mod p,

smi,j =H(si,j ||m) mod p,

where H is a cryptographic hash function. Then si adds masks
to input

yi = xi + bi
+

∑
j∈Su/{i}:i>j

si,j

−
∑

j∈Su/{i}:i<j

si,j mod p.

and sends masked input yi to corresponding fog node fu.

Round 4: Re-Mask. Assume some workers drop out before
sending the masked inputs and we use S ′u to represent
the surviving workers. Upon receiving masked inputs from
surviving workers, fu aggregates

∑
i∈S′

u

yi =
∑
i∈S′

u

xi + bi +
∑

j∈Su/{i}:i>j

si,j −
∑

j∈Su/{i}:i<j

si,j

=

∑
i∈S′

u

(xi + bi) +
∑
i∈Su

∑
j∈Su/S′

u:i>j

si,j

−
∑
i∈Su

∑
j∈Su/S′

u:i<j

si,j .

(4)
To recover

∑
i∈S′

u
(xi + bi), each fog node fu sends S ′u to

surviving workers and request {sSKi,j }i∈Su/S′
u

from workers
in S ′u. After receiving shares from surviving workers, each
fog recovers the secret key via SS.rec. Then fu recovers the
missing zero-sum masks and adds them to equation 4 to obtain
the randomly masked input.

Afterwards, each fu generates the new zero-sum mask. For
each m ∈ [M ′], fu computes

zmu,v = H(zu,v||m) mod p,

then fu computes

zu =
∑
i∈S′

u

(xi + bi) +
∑

v∈F :u>v

zu,v −
∑

v∈F :u<v

zu,v.

Finally, fu sends zu to cloud server.

Round 5: Unmasking. After receiving zu from all fog nodes,
S computes

Cagg =
∑
u∈F

∑
i∈S′

u

(xi + bi) +
∑

v∈F :u>v

zu,v −
∑

v∈F :u<v

zu,v

=

∑
u∈F

∑
i∈S′

u

(xi + bi) +
∑
u∈F

∑
v∈F

zu,v −
∑
u∈F

∑
v∈F

zu,v

=
∑
u∈F

∑
i∈S′

u

(xi + bi)

In order to remove the random mask, the cloud server requests
rj,i from each si. Then each worker si encrypts the secret
share

Di,j = AE.encrypt(ski,S , j||i||rj,i)

and sends the list {Di,j}j∈S′
u
/{i} to S through fu. Upon

receiving encrypted secret shares from all surviving workers,
S decrypts them and recover all ri, then generates random
masks to obtain the aggregation result

∑
u∈F

∑
i∈S′

u
xi.

C. FPTD Construction

In this part, we give detailed construction of FPTD. Note
that the plaintext numbers are float while cryptographic
primitives are performed on integers. We use a rounding factor
of 106 to scale float numbers up to integers.

1) Initialization: Before collecting and transmitting data,
each worker si initializes their weight as w0

i = 1 and distance
as d0i = 0. Then S initializes the public parameters and
establishes symmetric keys via One Time Initialization.

2) Secure Truth Update: In this phase, FPTD securely
aggregates weights and weighted truths to update the truths
according to equation 1. In each time slot t, each si first
collects sensory data xti and uploads his weight wt−1i and
weighted truth wt−1i × xi via SecAgg. Notice that we can
concatenate both values into one vector 〈wt−1i × xi, wt−1i 〉,
resulting in only one call to SecAgg.

3) Secure Weight Update: In this phase, S first returns
truths x∗t to all workers. After receiving truths, each si first
updates his distance according to equation 2 to obtain dti.
Then each worker submits his distance to S via SecAgg. After
obtaining aggregated distance

∑
u∈F

∑
i∈S′

u
dti, S computes

log (
∑
u∈F

∑
i∈S′

u
dti) and returns it to all workers. Upon

receiving log (
∑
u∈F

∑
i∈S′

u
dti), each worker updates his

weight according to equation 3.

After initialization, FPTD executes Secure Truth Update
phase and Secure Weight Update phase once in each time
slot t.

VI. SECURITY ANALYSIS

Theorem 1. Suppose there is at least one group and each
group contains at least 3 workers providing different sensory
data for each object. If all entities are semi-honest and there is
no collusion between fog nodes and cloud server, the sensory

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

data and weight will not be disclosed to any other entity under
FPTD framework.

proof. In order to prove that FPTD is secure, we only need
to prove the proposed SecAgg is secure. There are three types
of attacks an adversary can potentially launch under the semi-
honest assumption.

First, an adversary can compromise fog nodes. Once the
adversary compromises some fog nodes Fc ⊂ F , he/she can
obtain the combined view of these fog nodes which is a
list {

∑
i∈S′

u
xi + bi}u∈Fc

. However, since the random seeds
used to recover the random masks are encrypted using the
symmetric keys established between workers and the cloud
server, the adversary is not able to recover any xi or any partial
result.

Second, an adversary can compromise the cloud server.
Once the adversary compromises cloud server, he/she can
remove all random masks and
obtain both

∑
i∈S′

u
xi +

∑
v∈F :u>v zu,v −

∑
v∈F :u<v zu,v for

each fu and
∑
u∈F

∑
i∈S′

u
xi. However, since we assume no

collusion between fog nodes and the cloud server, the cloud
server cannot remove the zero-sum masks added by each fog
node, therefore cloud server can only obtain aggregation result∑
u∈F

∑
i∈S′

u
xi.

Finally, collusion may happen between workers or fog
nodes. Collusion in each group under the threshold tu reveals
nothing to corrupted workers since a t-out-of-n Shamir’s secret
sharing is information-theoretically secure against up to t− 1
corrupted parties.

VII. PERFORMANCE ANALYSIS

Here we conduct the performance comparison between
our scheme and [8] in terms of computation overhead and
communication overhead. The simulation is built using a PC
with 3.60Ghz Intel i7 and 16GB RAM running Windows 10.
FPTD is implemented in Python. Specifically, we construct
key agreement protocol from Elliptic-Curve over the NIST P-
256 curve composed with SHA256, authenticated encryption
from AES-GCM with a 128-bit key. In addition, we also
implement [8] as a baseline scheme for comparison. Without
loss of generality, we generate a dataset by sampling random
numbers as ground truths and add different levels of Gaussian
noise to simulate different levels of reliability of workers in
MCS applications. Notice that, we regard a worker’s reliability
in different time slots as a dynamic variable since the ground
truths for each object are rapidly changing over time.

For clarity, we present each entity’s overhead in one time
slot which consists of a Secure Truth Update and a Secure
Weight Update. Besides we execute each experiment 50 times
and present the average. Specifically, we assume the complete
worker group is divided into groups equally. By default, we
set the number of workers as 300, the number of fog nodes
as 5, the number of objects as 100 and the drop rate as 0.05.

A. Computation

First, we consider varying number of workers which varies
from 100 to 500 by the stride of 50. As shown in Fig.1,

with the increasing number of workers, FPTD achieves better
efficiency with respect to workers, fog and cloud. In particular,
cloud computation overhead of [8] grows to be unacceptable
when the number reaches 500 since the computation cost is
beyond 30 minutes.

(a) Average time of workers (b) Average time of cloud and fog

Fig. 1. Average computation cost with varying workers

Next, we consider varying fog nodes which varies in range
of [1, 2, 3, 4, 5, 6, 10, 15]. The result is presented in Fig.2.
From Fig.2, we can observe that when the number of fog
nodes is set to only, i.e., one group, FPTD achieves similar
efficiency as [8] with respect to all entities. Further, FPTD’s
computation overhead drops significantly when the number
of fog nodes grows. However, there is a turning point after
which the computation overhead drops slowly with respect to
all entities. The above observations show that it is enough
for FPTD to adopt only a few fog nodes to gain significant
efficiency improvement.

(a) Average time of workers (b) Average time of cloud and fog

Fig. 2. Average computation cost with varying fog nodes

Finally, we consider the effect of the drop rate. Specifically,
we let the drop rate vary from 0.00 to 0.20 by the stride of 0.05.
Here we consider only workers’ dropouts before submitting
their masked input since this is the worst case which brings
most computation and communication overheads. As shown in
Fig.3a, drop rate has little influence on worker’s computation
overhead since workers only need to upload shares of dropout
workers. However, we can observe from Fig.3b that the
computation overhead of cloud of [8] and fog of FPTD grows
linearly since they need to recover the secret keys of dropout
workers to cancel the zero-sum mask. Besides, the cloud of
FPTD’s computation overhead drops since the cloud needs to
recover fewer random masks.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

(a) Average time of workers (b) Average time of cloud and fog

Fig. 3. Average computation cost with varying drop rate

B. Communication

In this part, we give performance comparisons between
our FPTD and [8] in terms of communication overhead.
First, we present the performance with varying number of
workers. As illustrated in Fig.4, workers’ communication costs
of both FPTD and [8] grow linearly to the number of workers.
However, our FPTD grows significantly slower than [8] since
the group size of FPTD is divided by the number of fogs.

(a) Average cost on each worker (b) Average cost on cloud and fog

Fig. 4. Average communication cost with varying number of workers

Next, we compare the performance with a varying number
of fog nodes. We can observe from Fig.5a that the
communication overhead of FPTD’s workers drops when
number of fog nodes grows. Moreover, the communication
cost of FPTD’s cloud is reduced since the cloud removes the
burden of relaying the messages between workers. With more
fog nodes, each fog node’s communication overhead can also
be significantly reduced since the group size is reduced.

(a) Average cost on each worker (b) Average cost on cloud and fog

Fig. 5. Average communication cost with varying number of fogs

Due to space limitations, we omit the comparison with
varying drop rates and varying objects since these two factors
don’t influence the communication overhead heavily.

VIII. CONCLUSION

In this paper, we propose FPTD, a privacy-preserving truth
discovery framework for real-time applications in mobile
crowdsensing system. Our FPTD can utilize fog nodes to
divide the complete group into many small groups, which
gains significant efficiency improvement in terms of both
computation and communication. Besides, we design a much
more efficient and failure-robust secure aggregation protocol
which can aggregate results from these small groups with
no privacy compromise. However, we leave specific group
strategies as future directions.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 61972371
and Youth Innovation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant No. Y202093.

REFERENCES

[1] X. Zhang, Z. Yang, and Y. Liu, “Vehicle-based bi-objective crowdsourc-
ing,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 10, pp. 3420–3428, 2018.

[2] N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow, “Smartphones for large-scale behavior change interventions,”
IEEE Pervasive Computing, vol. 12, no. 3, pp. 66–73, 2013.

[3] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving conflicts in
heterogeneous data by truth discovery and source reliability estimation,”
in Proceedings of the 2014 International Conference on Management of
Data (SIGMOD). ACM, 2014, pp. 1187–1198.

[4] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han,
“A confidence-aware approach for truth discovery on long-tail data,”
Proceedings of the VLDB Endowment, vol. 8, no. 4, pp. 425–436, 2014.

[5] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao,
and K. Ren, “Cloud-enabled privacy-preserving truth discovery in crowd
sensing systems,” in Proceedings of the 2015 Conference on Embedded
Networked Sensor Systems. ACM, 2015, pp. 183–196.

[6] C. Zhang, L. Zhu, C. Xu, X. Liu, and K. Sharif, “Reliable and
privacy-preserving truth discovery for mobile crowdsensing systems,”
IEEE Transactions on Dependable and Secure Computing, 2019,
DOI:10.1109/TDSC.2019.2919517.

[7] K. Xue, B. Zhu, Q. Yang, N. Gai, D. S. Wei, and N. Yu, “InPPTD:
An lightweight incentive-based privacy-preserving truth discovery for
crowd sensing systems,” IEEE Internet of Things Journal, vol. 8, no. 6,
pp. 4305–4316, 2020.

[8] Y. Liu, S. Tang, H.-T. Wu, and X. Zhang, “RTPT: A framework for real-
time privacy-preserving truth discovery on crowdsensed data streams,”
Computer Networks, vol. 148, pp. 349–360, 2019.

[9] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 1175–1191.

[10] N. Gai, K. Xue, P. He, B. Zhu, J. Liu, and D. He, “An efficient data
aggregation scheme with local differential privacy in smart grid,” in
Proceedings of the 2020 International Conference on Mobility, Sensing
and Networking (MSN). IEEE, 2020, pp. 73–80.

[11] H. Jin, L. Su, and K. Nahrstedt, “Theseus: Incentivizing truth discovery
in mobile crowd sensing systems,” in Proceedings of the 2017
International Symposium on Mobile Ad Hoc Networking and Computing.
ACM, 2017, pp. 1–10.

[12] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[13] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, p. 612–613, 1979.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 13,2023 at 05:33:13 UTC from IEEE Xplore. Restrictions apply.

